| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpm2r | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| elpm2r | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 6697 | . . . . . . 7 ⊢ (𝐹:𝐶⟶𝐴 → dom 𝐹 = 𝐶) | |
| 2 | 1 | feq2d 6672 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (𝐹:dom 𝐹⟶𝐴 ↔ 𝐹:𝐶⟶𝐴)) |
| 3 | 1 | sseq1d 3978 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (dom 𝐹 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) |
| 4 | 2, 3 | anbi12d 632 | . . . . 5 ⊢ (𝐹:𝐶⟶𝐴 → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
| 6 | 5 | ibir 268 | . . 3 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
| 7 | elpm2g 8817 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
| 8 | 6, 7 | imbitrrid 246 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → 𝐹 ∈ (𝐴 ↑pm 𝐵))) |
| 9 | 8 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 dom cdm 5638 ⟶wf 6507 (class class class)co 7387 ↑pm cpm 8800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-pm 8802 |
| This theorem is referenced by: fpmg 8841 pmresg 8843 rlim 15461 ello12 15482 elo12 15493 sscpwex 17777 catcfuccl 18080 catcxpccl 18168 lmbrf 23147 cnextfval 23949 lmmbrf 25162 iscauf 25180 caucfil 25183 cmetcaulem 25188 lmclimf 25204 ismbf 25529 ismbfcn 25530 mbfconst 25534 cncombf 25559 cnmbf 25560 limcfval 25773 dvfval 25798 dvnff 25825 dvn2bss 25832 dvnfre 25856 taylfvallem1 26264 taylfval 26266 tayl0 26269 taylplem1 26270 taylply2 26275 taylply2OLD 26276 taylply 26277 dvtaylp 26278 dvntaylp 26279 dvntaylp0 26280 taylthlem1 26281 taylthlem2 26282 taylthlem2OLD 26283 ulmval 26289 ulmpm 26292 iscgrgd 28440 esumcvg 34076 mrsubfval 35495 elmrsubrn 35507 msubfval 35511 fwddifval 36150 fwddifnval 36151 fpmd 45257 xlimmnfvlem2 45831 xlimpnfvlem2 45835 dvnmptdivc 45936 dvnxpaek 45940 etransclem46 46278 issmflem 46725 fdivpm 48532 refdivpm 48533 elbigo2 48541 |
| Copyright terms: Public domain | W3C validator |