Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpm2r | Structured version Visualization version GIF version |
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
Ref | Expression |
---|---|
elpm2r | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6618 | . . . . . . 7 ⊢ (𝐹:𝐶⟶𝐴 → dom 𝐹 = 𝐶) | |
2 | 1 | feq2d 6595 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (𝐹:dom 𝐹⟶𝐴 ↔ 𝐹:𝐶⟶𝐴)) |
3 | 1 | sseq1d 3953 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (dom 𝐹 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) |
4 | 2, 3 | anbi12d 631 | . . . . 5 ⊢ (𝐹:𝐶⟶𝐴 → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
6 | 5 | ibir 267 | . . 3 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
7 | elpm2g 8641 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
8 | 6, 7 | syl5ibr 245 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → 𝐹 ∈ (𝐴 ↑pm 𝐵))) |
9 | 8 | imp 407 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2107 ⊆ wss 3888 dom cdm 5590 ⟶wf 6433 (class class class)co 7284 ↑pm cpm 8625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-pm 8627 |
This theorem is referenced by: fpmg 8665 pmresg 8667 rlim 15213 ello12 15234 elo12 15245 sscpwex 17536 catcfuccl 17843 catcfucclOLD 17844 catcxpccl 17933 catcxpcclOLD 17934 lmbrf 22420 cnextfval 23222 lmmbrf 24435 iscauf 24453 caucfil 24456 cmetcaulem 24461 lmclimf 24477 ismbf 24801 ismbfcn 24802 mbfconst 24806 cncombf 24831 cnmbf 24832 limcfval 25045 dvfval 25070 dvnff 25096 dvn2bss 25103 dvnfre 25125 taylfvallem1 25525 taylfval 25527 tayl0 25530 taylplem1 25531 taylply2 25536 taylply 25537 dvtaylp 25538 dvntaylp 25539 dvntaylp0 25540 taylthlem1 25541 taylthlem2 25542 ulmval 25548 ulmpm 25551 iscgrgd 26883 esumcvg 32063 mrsubfval 33479 elmrsubrn 33491 msubfval 33495 fwddifval 34473 fwddifnval 34474 fpmd 42818 xlimmnfvlem2 43381 xlimpnfvlem2 43385 dvnmptdivc 43486 dvnxpaek 43490 etransclem46 43828 issmflem 44272 fdivpm 45900 refdivpm 45901 elbigo2 45909 |
Copyright terms: Public domain | W3C validator |