![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpm2r | Structured version Visualization version GIF version |
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
Ref | Expression |
---|---|
elpm2r | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6726 | . . . . . . 7 ⊢ (𝐹:𝐶⟶𝐴 → dom 𝐹 = 𝐶) | |
2 | 1 | feq2d 6703 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (𝐹:dom 𝐹⟶𝐴 ↔ 𝐹:𝐶⟶𝐴)) |
3 | 1 | sseq1d 4013 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (dom 𝐹 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) |
4 | 2, 3 | anbi12d 631 | . . . . 5 ⊢ (𝐹:𝐶⟶𝐴 → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
6 | 5 | ibir 267 | . . 3 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
7 | elpm2g 8837 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
8 | 6, 7 | imbitrrid 245 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → 𝐹 ∈ (𝐴 ↑pm 𝐵))) |
9 | 8 | imp 407 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3948 dom cdm 5676 ⟶wf 6539 (class class class)co 7408 ↑pm cpm 8820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-pm 8822 |
This theorem is referenced by: fpmg 8861 pmresg 8863 rlim 15438 ello12 15459 elo12 15470 sscpwex 17761 catcfuccl 18068 catcfucclOLD 18069 catcxpccl 18158 catcxpcclOLD 18159 lmbrf 22763 cnextfval 23565 lmmbrf 24778 iscauf 24796 caucfil 24799 cmetcaulem 24804 lmclimf 24820 ismbf 25144 ismbfcn 25145 mbfconst 25149 cncombf 25174 cnmbf 25175 limcfval 25388 dvfval 25413 dvnff 25439 dvn2bss 25446 dvnfre 25468 taylfvallem1 25868 taylfval 25870 tayl0 25873 taylplem1 25874 taylply2 25879 taylply 25880 dvtaylp 25881 dvntaylp 25882 dvntaylp0 25883 taylthlem1 25884 taylthlem2 25885 ulmval 25891 ulmpm 25894 iscgrgd 27761 esumcvg 33079 mrsubfval 34494 elmrsubrn 34506 msubfval 34510 fwddifval 35129 fwddifnval 35130 fpmd 43958 xlimmnfvlem2 44539 xlimpnfvlem2 44543 dvnmptdivc 44644 dvnxpaek 44648 etransclem46 44986 issmflem 45433 fdivpm 47219 refdivpm 47220 elbigo2 47228 |
Copyright terms: Public domain | W3C validator |