| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpm2r | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| elpm2r | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 6679 | . . . . . . 7 ⊢ (𝐹:𝐶⟶𝐴 → dom 𝐹 = 𝐶) | |
| 2 | 1 | feq2d 6654 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (𝐹:dom 𝐹⟶𝐴 ↔ 𝐹:𝐶⟶𝐴)) |
| 3 | 1 | sseq1d 3975 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (dom 𝐹 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) |
| 4 | 2, 3 | anbi12d 632 | . . . . 5 ⊢ (𝐹:𝐶⟶𝐴 → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
| 6 | 5 | ibir 268 | . . 3 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
| 7 | elpm2g 8794 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
| 8 | 6, 7 | imbitrrid 246 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → 𝐹 ∈ (𝐴 ↑pm 𝐵))) |
| 9 | 8 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 dom cdm 5631 ⟶wf 6495 (class class class)co 7369 ↑pm cpm 8777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-pm 8779 |
| This theorem is referenced by: fpmg 8818 pmresg 8820 rlim 15437 ello12 15458 elo12 15469 sscpwex 17753 catcfuccl 18056 catcxpccl 18144 lmbrf 23123 cnextfval 23925 lmmbrf 25138 iscauf 25156 caucfil 25159 cmetcaulem 25164 lmclimf 25180 ismbf 25505 ismbfcn 25506 mbfconst 25510 cncombf 25535 cnmbf 25536 limcfval 25749 dvfval 25774 dvnff 25801 dvn2bss 25808 dvnfre 25832 taylfvallem1 26240 taylfval 26242 tayl0 26245 taylplem1 26246 taylply2 26251 taylply2OLD 26252 taylply 26253 dvtaylp 26254 dvntaylp 26255 dvntaylp0 26256 taylthlem1 26257 taylthlem2 26258 taylthlem2OLD 26259 ulmval 26265 ulmpm 26268 iscgrgd 28416 esumcvg 34049 mrsubfval 35468 elmrsubrn 35480 msubfval 35484 fwddifval 36123 fwddifnval 36124 fpmd 45230 xlimmnfvlem2 45804 xlimpnfvlem2 45808 dvnmptdivc 45909 dvnxpaek 45913 etransclem46 46251 issmflem 46698 fdivpm 48505 refdivpm 48506 elbigo2 48514 |
| Copyright terms: Public domain | W3C validator |