![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpm2r | Structured version Visualization version GIF version |
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
Ref | Expression |
---|---|
elpm2r | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6727 | . . . . . . 7 ⊢ (𝐹:𝐶⟶𝐴 → dom 𝐹 = 𝐶) | |
2 | 1 | feq2d 6704 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (𝐹:dom 𝐹⟶𝐴 ↔ 𝐹:𝐶⟶𝐴)) |
3 | 1 | sseq1d 4014 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (dom 𝐹 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) |
4 | 2, 3 | anbi12d 632 | . . . . 5 ⊢ (𝐹:𝐶⟶𝐴 → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
5 | 4 | adantr 482 | . . . 4 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
6 | 5 | ibir 268 | . . 3 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
7 | elpm2g 8838 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
8 | 6, 7 | imbitrrid 245 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → 𝐹 ∈ (𝐴 ↑pm 𝐵))) |
9 | 8 | imp 408 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3949 dom cdm 5677 ⟶wf 6540 (class class class)co 7409 ↑pm cpm 8821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-pm 8823 |
This theorem is referenced by: fpmg 8862 pmresg 8864 rlim 15439 ello12 15460 elo12 15471 sscpwex 17762 catcfuccl 18069 catcfucclOLD 18070 catcxpccl 18159 catcxpcclOLD 18160 lmbrf 22764 cnextfval 23566 lmmbrf 24779 iscauf 24797 caucfil 24800 cmetcaulem 24805 lmclimf 24821 ismbf 25145 ismbfcn 25146 mbfconst 25150 cncombf 25175 cnmbf 25176 limcfval 25389 dvfval 25414 dvnff 25440 dvn2bss 25447 dvnfre 25469 taylfvallem1 25869 taylfval 25871 tayl0 25874 taylplem1 25875 taylply2 25880 taylply 25881 dvtaylp 25882 dvntaylp 25883 dvntaylp0 25884 taylthlem1 25885 taylthlem2 25886 ulmval 25892 ulmpm 25895 iscgrgd 27795 esumcvg 33115 mrsubfval 34530 elmrsubrn 34542 msubfval 34546 fwddifval 35165 fwddifnval 35166 fpmd 44016 xlimmnfvlem2 44597 xlimpnfvlem2 44601 dvnmptdivc 44702 dvnxpaek 44706 etransclem46 45044 issmflem 45491 fdivpm 47277 refdivpm 47278 elbigo2 47286 |
Copyright terms: Public domain | W3C validator |