| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpm2r | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| elpm2r | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 6700 | . . . . . . 7 ⊢ (𝐹:𝐶⟶𝐴 → dom 𝐹 = 𝐶) | |
| 2 | 1 | feq2d 6675 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (𝐹:dom 𝐹⟶𝐴 ↔ 𝐹:𝐶⟶𝐴)) |
| 3 | 1 | sseq1d 3981 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (dom 𝐹 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) |
| 4 | 2, 3 | anbi12d 632 | . . . . 5 ⊢ (𝐹:𝐶⟶𝐴 → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
| 6 | 5 | ibir 268 | . . 3 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
| 7 | elpm2g 8820 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
| 8 | 6, 7 | imbitrrid 246 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → 𝐹 ∈ (𝐴 ↑pm 𝐵))) |
| 9 | 8 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 dom cdm 5641 ⟶wf 6510 (class class class)co 7390 ↑pm cpm 8803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pm 8805 |
| This theorem is referenced by: fpmg 8844 pmresg 8846 rlim 15468 ello12 15489 elo12 15500 sscpwex 17784 catcfuccl 18087 catcxpccl 18175 lmbrf 23154 cnextfval 23956 lmmbrf 25169 iscauf 25187 caucfil 25190 cmetcaulem 25195 lmclimf 25211 ismbf 25536 ismbfcn 25537 mbfconst 25541 cncombf 25566 cnmbf 25567 limcfval 25780 dvfval 25805 dvnff 25832 dvn2bss 25839 dvnfre 25863 taylfvallem1 26271 taylfval 26273 tayl0 26276 taylplem1 26277 taylply2 26282 taylply2OLD 26283 taylply 26284 dvtaylp 26285 dvntaylp 26286 dvntaylp0 26287 taylthlem1 26288 taylthlem2 26289 taylthlem2OLD 26290 ulmval 26296 ulmpm 26299 iscgrgd 28447 esumcvg 34083 mrsubfval 35502 elmrsubrn 35514 msubfval 35518 fwddifval 36157 fwddifnval 36158 fpmd 45264 xlimmnfvlem2 45838 xlimpnfvlem2 45842 dvnmptdivc 45943 dvnxpaek 45947 etransclem46 46285 issmflem 46732 fdivpm 48536 refdivpm 48537 elbigo2 48545 |
| Copyright terms: Public domain | W3C validator |