| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpm2r | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| elpm2r | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 6655 | . . . . . . 7 ⊢ (𝐹:𝐶⟶𝐴 → dom 𝐹 = 𝐶) | |
| 2 | 1 | feq2d 6630 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (𝐹:dom 𝐹⟶𝐴 ↔ 𝐹:𝐶⟶𝐴)) |
| 3 | 1 | sseq1d 3961 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (dom 𝐹 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) |
| 4 | 2, 3 | anbi12d 632 | . . . . 5 ⊢ (𝐹:𝐶⟶𝐴 → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
| 6 | 5 | ibir 268 | . . 3 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
| 7 | elpm2g 8763 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
| 8 | 6, 7 | imbitrrid 246 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → 𝐹 ∈ (𝐴 ↑pm 𝐵))) |
| 9 | 8 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 dom cdm 5611 ⟶wf 6472 (class class class)co 7341 ↑pm cpm 8746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-pm 8748 |
| This theorem is referenced by: fpmg 8787 pmresg 8789 rlim 15397 ello12 15418 elo12 15429 sscpwex 17717 catcfuccl 18020 catcxpccl 18108 lmbrf 23170 cnextfval 23972 lmmbrf 25184 iscauf 25202 caucfil 25205 cmetcaulem 25210 lmclimf 25226 ismbf 25551 ismbfcn 25552 mbfconst 25556 cncombf 25581 cnmbf 25582 limcfval 25795 dvfval 25820 dvnff 25847 dvn2bss 25854 dvnfre 25878 taylfvallem1 26286 taylfval 26288 tayl0 26291 taylplem1 26292 taylply2 26297 taylply2OLD 26298 taylply 26299 dvtaylp 26300 dvntaylp 26301 dvntaylp0 26302 taylthlem1 26303 taylthlem2 26304 taylthlem2OLD 26305 ulmval 26311 ulmpm 26314 iscgrgd 28486 esumcvg 34091 mrsubfval 35544 elmrsubrn 35556 msubfval 35560 fwddifval 36196 fwddifnval 36197 fpmd 45300 xlimmnfvlem2 45871 xlimpnfvlem2 45875 dvnmptdivc 45976 dvnxpaek 45980 etransclem46 46318 issmflem 46765 fdivpm 48575 refdivpm 48576 elbigo2 48584 |
| Copyright terms: Public domain | W3C validator |