MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpm2r Structured version   Visualization version   GIF version

Theorem elpm2r 8423
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2r (((𝐴𝑉𝐵𝑊) ∧ (𝐹:𝐶𝐴𝐶𝐵)) → 𝐹 ∈ (𝐴pm 𝐵))

Proof of Theorem elpm2r
StepHypRef Expression
1 fdm 6521 . . . . . . 7 (𝐹:𝐶𝐴 → dom 𝐹 = 𝐶)
21feq2d 6499 . . . . . 6 (𝐹:𝐶𝐴 → (𝐹:dom 𝐹𝐴𝐹:𝐶𝐴))
31sseq1d 3997 . . . . . 6 (𝐹:𝐶𝐴 → (dom 𝐹𝐵𝐶𝐵))
42, 3anbi12d 632 . . . . 5 (𝐹:𝐶𝐴 → ((𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵) ↔ (𝐹:𝐶𝐴𝐶𝐵)))
54adantr 483 . . . 4 ((𝐹:𝐶𝐴𝐶𝐵) → ((𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵) ↔ (𝐹:𝐶𝐴𝐶𝐵)))
65ibir 270 . . 3 ((𝐹:𝐶𝐴𝐶𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
7 elpm2g 8422 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
86, 7syl5ibr 248 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐹:𝐶𝐴𝐶𝐵) → 𝐹 ∈ (𝐴pm 𝐵)))
98imp 409 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐹:𝐶𝐴𝐶𝐵)) → 𝐹 ∈ (𝐴pm 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110  wss 3935  dom cdm 5554  wf 6350  (class class class)co 7155  pm cpm 8406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-pm 8408
This theorem is referenced by:  fpmg  8431  pmresg  8433  rlim  14851  ello12  14872  elo12  14883  sscpwex  17084  catcfuccl  17368  catcxpccl  17456  lmbrf  21867  cnextfval  22669  lmmbrf  23864  iscauf  23882  caucfil  23885  cmetcaulem  23890  lmclimf  23906  ismbf  24228  ismbfcn  24229  mbfconst  24233  cncombf  24258  cnmbf  24259  limcfval  24469  dvfval  24494  dvnff  24519  dvn2bss  24526  dvnfre  24548  taylfvallem1  24944  taylfval  24946  tayl0  24949  taylplem1  24950  taylply2  24955  taylply  24956  dvtaylp  24957  dvntaylp  24958  dvntaylp0  24959  taylthlem1  24960  taylthlem2  24961  ulmval  24967  ulmpm  24970  iscgrgd  26298  esumcvg  31345  mrsubfval  32755  elmrsubrn  32767  msubfval  32771  fwddifval  33623  fwddifnval  33624  fpmd  41536  xlimmnfvlem2  42112  xlimpnfvlem2  42116  dvnmptdivc  42221  dvnxpaek  42225  etransclem46  42564  issmflem  43003  fdivpm  44602  refdivpm  44603  elbigo2  44611
  Copyright terms: Public domain W3C validator