Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linccl Structured version   Visualization version   GIF version

Theorem linccl 48529
Description: A linear combination of vectors is a vector. (Contributed by AV, 31-Mar-2019.)
Hypotheses
Ref Expression
linccl.b 𝐵 = (Base‘𝑀)
linccl.r 𝑅 = (Base‘(Scalar‘𝑀))
Assertion
Ref Expression
linccl ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) ∈ 𝐵)

Proof of Theorem linccl
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑀 ∈ LMod)
2 linccl.r . . . . . . . 8 𝑅 = (Base‘(Scalar‘𝑀))
32oveq1i 7365 . . . . . . 7 (𝑅m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
43eleq2i 2825 . . . . . 6 (𝑆 ∈ (𝑅m 𝑉) ↔ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
54biimpi 216 . . . . 5 (𝑆 ∈ (𝑅m 𝑉) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
653ad2ant3 1135 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
76adantl 481 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8 linccl.b . . . . . . 7 𝐵 = (Base‘𝑀)
98sseq2i 3961 . . . . . 6 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
10 fvex 6844 . . . . . . . . 9 (Base‘𝑀) ∈ V
1110ssex 5263 . . . . . . . 8 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ V)
12 elpwg 4554 . . . . . . . 8 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
1311, 12syl 17 . . . . . . 7 (𝑉 ⊆ (Base‘𝑀) → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
1413ibir 268 . . . . . 6 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀))
159, 14sylbi 217 . . . . 5 (𝑉𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
16153ad2ant2 1134 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
1716adantl 481 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
18 lincval 48524 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣))))
191, 7, 17, 18syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣))))
20 eqid 2733 . . 3 (0g𝑀) = (0g𝑀)
21 lmodcmn 20853 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
2221adantr 480 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑀 ∈ CMnd)
23 simpr1 1195 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑉 ∈ Fin)
241adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
252fvexi 6845 . . . . . . . . . . 11 𝑅 ∈ V
26 elmapg 8772 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝑉 ∈ Fin) → (𝑆 ∈ (𝑅m 𝑉) ↔ 𝑆:𝑉𝑅))
2725, 26mpan 690 . . . . . . . . . 10 (𝑉 ∈ Fin → (𝑆 ∈ (𝑅m 𝑉) ↔ 𝑆:𝑉𝑅))
28 ffvelcdm 7023 . . . . . . . . . . 11 ((𝑆:𝑉𝑅𝑣𝑉) → (𝑆𝑣) ∈ 𝑅)
2928ex 412 . . . . . . . . . 10 (𝑆:𝑉𝑅 → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
3027, 29biimtrdi 253 . . . . . . . . 9 (𝑉 ∈ Fin → (𝑆 ∈ (𝑅m 𝑉) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅)))
3130imp 406 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑆 ∈ (𝑅m 𝑉)) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
32313adant2 1131 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
3332adantl 481 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
3433imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → (𝑆𝑣) ∈ 𝑅)
35 ssel 3925 . . . . . . . 8 (𝑉𝐵 → (𝑣𝑉𝑣𝐵))
36353ad2ant2 1134 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → (𝑣𝑉𝑣𝐵))
3736adantl 481 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉𝑣𝐵))
3837imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑣𝐵)
39 eqid 2733 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
40 eqid 2733 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
418, 39, 40, 2lmodvscl 20821 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑆𝑣) ∈ 𝑅𝑣𝐵) → ((𝑆𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4224, 34, 38, 41syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4342fmpttd 7057 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣)):𝑉𝐵)
4416anim2i 617 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
45 simpr3 1197 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆 ∈ (𝑅m 𝑉))
46 elmapi 8782 . . . . . . 7 (𝑆 ∈ (𝑅m 𝑉) → 𝑆:𝑉𝑅)
47463ad2ant3 1135 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → 𝑆:𝑉𝑅)
4847adantl 481 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆:𝑉𝑅)
49 fvexd 6846 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (0g‘(Scalar‘𝑀)) ∈ V)
5048, 23, 49fdmfifsupp 9269 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆 finSupp (0g‘(Scalar‘𝑀)))
5139, 2scmfsupp 48489 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑆 ∈ (𝑅m 𝑉) ∧ 𝑆 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
5244, 45, 50, 51syl3anc 1373 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
538, 20, 22, 23, 43, 52gsumcl 19837 . 2 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝐵)
5419, 53eqeltrd 2833 1 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3438  wss 3899  𝒫 cpw 4551   class class class wbr 5095  cmpt 5176  wf 6485  cfv 6489  (class class class)co 7355  m cmap 8759  Fincfn 8878   finSupp cfsupp 9255  Basecbs 17130  Scalarcsca 17174   ·𝑠 cvsca 17175  0gc0g 17353   Σg cgsu 17354  CMndccmn 19702  LModclmod 20803   linC clinc 48519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-seq 13919  df-hash 14248  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-plusg 17184  df-0g 17355  df-gsum 17356  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-minusg 18860  df-cntz 19239  df-cmn 19704  df-abl 19705  df-mgp 20069  df-ur 20110  df-ring 20163  df-lmod 20805  df-linc 48521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator