Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linccl Structured version   Visualization version   GIF version

Theorem linccl 48407
Description: A linear combination of vectors is a vector. (Contributed by AV, 31-Mar-2019.)
Hypotheses
Ref Expression
linccl.b 𝐵 = (Base‘𝑀)
linccl.r 𝑅 = (Base‘(Scalar‘𝑀))
Assertion
Ref Expression
linccl ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) ∈ 𝐵)

Proof of Theorem linccl
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑀 ∈ LMod)
2 linccl.r . . . . . . . 8 𝑅 = (Base‘(Scalar‘𝑀))
32oveq1i 7400 . . . . . . 7 (𝑅m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
43eleq2i 2821 . . . . . 6 (𝑆 ∈ (𝑅m 𝑉) ↔ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
54biimpi 216 . . . . 5 (𝑆 ∈ (𝑅m 𝑉) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
653ad2ant3 1135 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
76adantl 481 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8 linccl.b . . . . . . 7 𝐵 = (Base‘𝑀)
98sseq2i 3979 . . . . . 6 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
10 fvex 6874 . . . . . . . . 9 (Base‘𝑀) ∈ V
1110ssex 5279 . . . . . . . 8 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ V)
12 elpwg 4569 . . . . . . . 8 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
1311, 12syl 17 . . . . . . 7 (𝑉 ⊆ (Base‘𝑀) → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
1413ibir 268 . . . . . 6 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀))
159, 14sylbi 217 . . . . 5 (𝑉𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
16153ad2ant2 1134 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
1716adantl 481 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
18 lincval 48402 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣))))
191, 7, 17, 18syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣))))
20 eqid 2730 . . 3 (0g𝑀) = (0g𝑀)
21 lmodcmn 20823 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
2221adantr 480 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑀 ∈ CMnd)
23 simpr1 1195 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑉 ∈ Fin)
241adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
252fvexi 6875 . . . . . . . . . . 11 𝑅 ∈ V
26 elmapg 8815 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝑉 ∈ Fin) → (𝑆 ∈ (𝑅m 𝑉) ↔ 𝑆:𝑉𝑅))
2725, 26mpan 690 . . . . . . . . . 10 (𝑉 ∈ Fin → (𝑆 ∈ (𝑅m 𝑉) ↔ 𝑆:𝑉𝑅))
28 ffvelcdm 7056 . . . . . . . . . . 11 ((𝑆:𝑉𝑅𝑣𝑉) → (𝑆𝑣) ∈ 𝑅)
2928ex 412 . . . . . . . . . 10 (𝑆:𝑉𝑅 → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
3027, 29biimtrdi 253 . . . . . . . . 9 (𝑉 ∈ Fin → (𝑆 ∈ (𝑅m 𝑉) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅)))
3130imp 406 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑆 ∈ (𝑅m 𝑉)) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
32313adant2 1131 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
3332adantl 481 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
3433imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → (𝑆𝑣) ∈ 𝑅)
35 ssel 3943 . . . . . . . 8 (𝑉𝐵 → (𝑣𝑉𝑣𝐵))
36353ad2ant2 1134 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → (𝑣𝑉𝑣𝐵))
3736adantl 481 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉𝑣𝐵))
3837imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑣𝐵)
39 eqid 2730 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
40 eqid 2730 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
418, 39, 40, 2lmodvscl 20791 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑆𝑣) ∈ 𝑅𝑣𝐵) → ((𝑆𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4224, 34, 38, 41syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4342fmpttd 7090 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣)):𝑉𝐵)
4416anim2i 617 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
45 simpr3 1197 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆 ∈ (𝑅m 𝑉))
46 elmapi 8825 . . . . . . 7 (𝑆 ∈ (𝑅m 𝑉) → 𝑆:𝑉𝑅)
47463ad2ant3 1135 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → 𝑆:𝑉𝑅)
4847adantl 481 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆:𝑉𝑅)
49 fvexd 6876 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (0g‘(Scalar‘𝑀)) ∈ V)
5048, 23, 49fdmfifsupp 9333 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆 finSupp (0g‘(Scalar‘𝑀)))
5139, 2scmfsupp 48367 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑆 ∈ (𝑅m 𝑉) ∧ 𝑆 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
5244, 45, 50, 51syl3anc 1373 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
538, 20, 22, 23, 43, 52gsumcl 19852 . 2 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝐵)
5419, 53eqeltrd 2829 1 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  CMndccmn 19717  LModclmod 20773   linC clinc 48397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-linc 48399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator