Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linccl Structured version   Visualization version   GIF version

Theorem linccl 45643
Description: A linear combination of vectors is a vector. (Contributed by AV, 31-Mar-2019.)
Hypotheses
Ref Expression
linccl.b 𝐵 = (Base‘𝑀)
linccl.r 𝑅 = (Base‘(Scalar‘𝑀))
Assertion
Ref Expression
linccl ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) ∈ 𝐵)

Proof of Theorem linccl
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑀 ∈ LMod)
2 linccl.r . . . . . . . 8 𝑅 = (Base‘(Scalar‘𝑀))
32oveq1i 7265 . . . . . . 7 (𝑅m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
43eleq2i 2830 . . . . . 6 (𝑆 ∈ (𝑅m 𝑉) ↔ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
54biimpi 215 . . . . 5 (𝑆 ∈ (𝑅m 𝑉) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
653ad2ant3 1133 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
76adantl 481 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8 linccl.b . . . . . . 7 𝐵 = (Base‘𝑀)
98sseq2i 3946 . . . . . 6 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
10 fvex 6769 . . . . . . . . 9 (Base‘𝑀) ∈ V
1110ssex 5240 . . . . . . . 8 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ V)
12 elpwg 4533 . . . . . . . 8 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
1311, 12syl 17 . . . . . . 7 (𝑉 ⊆ (Base‘𝑀) → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
1413ibir 267 . . . . . 6 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀))
159, 14sylbi 216 . . . . 5 (𝑉𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
16153ad2ant2 1132 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
1716adantl 481 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
18 lincval 45638 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣))))
191, 7, 17, 18syl3anc 1369 . 2 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣))))
20 eqid 2738 . . 3 (0g𝑀) = (0g𝑀)
21 lmodcmn 20086 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
2221adantr 480 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑀 ∈ CMnd)
23 simpr1 1192 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑉 ∈ Fin)
241adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
252fvexi 6770 . . . . . . . . . . 11 𝑅 ∈ V
26 elmapg 8586 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝑉 ∈ Fin) → (𝑆 ∈ (𝑅m 𝑉) ↔ 𝑆:𝑉𝑅))
2725, 26mpan 686 . . . . . . . . . 10 (𝑉 ∈ Fin → (𝑆 ∈ (𝑅m 𝑉) ↔ 𝑆:𝑉𝑅))
28 ffvelrn 6941 . . . . . . . . . . 11 ((𝑆:𝑉𝑅𝑣𝑉) → (𝑆𝑣) ∈ 𝑅)
2928ex 412 . . . . . . . . . 10 (𝑆:𝑉𝑅 → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
3027, 29syl6bi 252 . . . . . . . . 9 (𝑉 ∈ Fin → (𝑆 ∈ (𝑅m 𝑉) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅)))
3130imp 406 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑆 ∈ (𝑅m 𝑉)) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
32313adant2 1129 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
3332adantl 481 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉 → (𝑆𝑣) ∈ 𝑅))
3433imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → (𝑆𝑣) ∈ 𝑅)
35 ssel 3910 . . . . . . . 8 (𝑉𝐵 → (𝑣𝑉𝑣𝐵))
36353ad2ant2 1132 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → (𝑣𝑉𝑣𝐵))
3736adantl 481 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉𝑣𝐵))
3837imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑣𝐵)
39 eqid 2738 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
40 eqid 2738 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
418, 39, 40, 2lmodvscl 20055 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑆𝑣) ∈ 𝑅𝑣𝐵) → ((𝑆𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4224, 34, 38, 41syl3anc 1369 . . . 4 (((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4342fmpttd 6971 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣)):𝑉𝐵)
4416anim2i 616 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
45 simpr3 1194 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆 ∈ (𝑅m 𝑉))
46 elmapi 8595 . . . . . . 7 (𝑆 ∈ (𝑅m 𝑉) → 𝑆:𝑉𝑅)
47463ad2ant3 1133 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉)) → 𝑆:𝑉𝑅)
4847adantl 481 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆:𝑉𝑅)
49 fvexd 6771 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (0g‘(Scalar‘𝑀)) ∈ V)
5048, 23, 49fdmfifsupp 9068 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → 𝑆 finSupp (0g‘(Scalar‘𝑀)))
5139, 2scmfsupp 45602 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑆 ∈ (𝑅m 𝑉) ∧ 𝑆 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
5244, 45, 50, 51syl3anc 1369 . . 3 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
538, 20, 22, 23, 43, 52gsumcl 19431 . 2 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝑆𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝐵)
5419, 53eqeltrd 2839 1 ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉𝐵𝑆 ∈ (𝑅m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  CMndccmn 19301  LModclmod 20038   linC clinc 45633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-linc 45635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator