MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzaddcl Structured version   Visualization version   GIF version

Theorem uzaddcl 11946
Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uzaddcl ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ𝑀))

Proof of Theorem uzaddcl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelcn 11900 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
2 nn0cn 11504 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
3 ax-1cn 10196 . . . . . . . . 9 1 ∈ ℂ
4 addass 10225 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
53, 4mp3an3 1561 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
61, 2, 5syl2anr 584 . . . . . . 7 ((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
76adantr 466 . . . . . 6 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
8 peano2uz 11943 . . . . . . 7 ((𝑁 + 𝑘) ∈ (ℤ𝑀) → ((𝑁 + 𝑘) + 1) ∈ (ℤ𝑀))
98adantl 467 . . . . . 6 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) ∈ (ℤ𝑀))
107, 9eqeltrrd 2851 . . . . 5 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))
1110exp31 406 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 𝑘) ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
1211a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑘) ∈ (ℤ𝑀)) → (𝑁 ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
131addid1d 10438 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) = 𝑁)
1413eleq1d 2835 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 0) ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑀)))
1514ibir 257 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) ∈ (ℤ𝑀))
16 oveq2 6801 . . . . 5 (𝑗 = 0 → (𝑁 + 𝑗) = (𝑁 + 0))
1716eleq1d 2835 . . . 4 (𝑗 = 0 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 0) ∈ (ℤ𝑀)))
1817imbi2d 329 . . 3 (𝑗 = 0 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) ∈ (ℤ𝑀))))
19 oveq2 6801 . . . . 5 (𝑗 = 𝑘 → (𝑁 + 𝑗) = (𝑁 + 𝑘))
2019eleq1d 2835 . . . 4 (𝑗 = 𝑘 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 𝑘) ∈ (ℤ𝑀)))
2120imbi2d 329 . . 3 (𝑗 = 𝑘 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑘) ∈ (ℤ𝑀))))
22 oveq2 6801 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑁 + 𝑗) = (𝑁 + (𝑘 + 1)))
2322eleq1d 2835 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀)))
2423imbi2d 329 . . 3 (𝑗 = (𝑘 + 1) → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
25 oveq2 6801 . . . . 5 (𝑗 = 𝐾 → (𝑁 + 𝑗) = (𝑁 + 𝐾))
2625eleq1d 2835 . . . 4 (𝑗 = 𝐾 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 𝐾) ∈ (ℤ𝑀)))
2726imbi2d 329 . . 3 (𝑗 = 𝐾 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ𝑀))))
2812, 15, 18, 21, 24, 27nn0indALT 11675 . 2 (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ𝑀)))
2928impcom 394 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   + caddc 10141  0cn0 11494  cuz 11888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889
This theorem is referenced by:  elfz0add  12646  zpnn0elfzo  12749  ccatass  13570  ccatrn  13571  swrdccat1  13666  swrdccat2  13667  splfv1  13715  splval2  13717  revccat  13724  relexpaddg  14001  isercoll2  14607  iseraltlem2  14621  iseraltlem3  14622  mertenslem1  14823  eftlub  15045  vdwlem6  15897  gsumccat  17586  efginvrel2  18347  efgredleme  18363  efgcpbllemb  18375  geolim3  24314  jm2.27c  38100  iunrelexpuztr  38537  pfxccat1  41938
  Copyright terms: Public domain W3C validator