MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzaddcl Structured version   Visualization version   GIF version

Theorem uzaddcl 12805
Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uzaddcl ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ𝑀))

Proof of Theorem uzaddcl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelcn 12747 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
2 nn0cn 12394 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
3 ax-1cn 11067 . . . . . . . . 9 1 ∈ ℂ
4 addass 11096 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
53, 4mp3an3 1452 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
61, 2, 5syl2anr 597 . . . . . . 7 ((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
76adantr 480 . . . . . 6 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
8 peano2uz 12802 . . . . . . 7 ((𝑁 + 𝑘) ∈ (ℤ𝑀) → ((𝑁 + 𝑘) + 1) ∈ (ℤ𝑀))
98adantl 481 . . . . . 6 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) ∈ (ℤ𝑀))
107, 9eqeltrrd 2829 . . . . 5 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))
1110exp31 419 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 𝑘) ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
1211a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑘) ∈ (ℤ𝑀)) → (𝑁 ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
131addridd 11316 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) = 𝑁)
1413eleq1d 2813 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 0) ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑀)))
1514ibir 268 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) ∈ (ℤ𝑀))
16 oveq2 7357 . . . . 5 (𝑗 = 0 → (𝑁 + 𝑗) = (𝑁 + 0))
1716eleq1d 2813 . . . 4 (𝑗 = 0 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 0) ∈ (ℤ𝑀)))
1817imbi2d 340 . . 3 (𝑗 = 0 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) ∈ (ℤ𝑀))))
19 oveq2 7357 . . . . 5 (𝑗 = 𝑘 → (𝑁 + 𝑗) = (𝑁 + 𝑘))
2019eleq1d 2813 . . . 4 (𝑗 = 𝑘 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 𝑘) ∈ (ℤ𝑀)))
2120imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑘) ∈ (ℤ𝑀))))
22 oveq2 7357 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑁 + 𝑗) = (𝑁 + (𝑘 + 1)))
2322eleq1d 2813 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀)))
2423imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
25 oveq2 7357 . . . . 5 (𝑗 = 𝐾 → (𝑁 + 𝑗) = (𝑁 + 𝐾))
2625eleq1d 2813 . . . 4 (𝑗 = 𝐾 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 𝐾) ∈ (ℤ𝑀)))
2726imbi2d 340 . . 3 (𝑗 = 𝐾 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ𝑀))))
2812, 15, 18, 21, 24, 27nn0indALT 12572 . 2 (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ𝑀)))
2928impcom 407 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012  0cn0 12384  cuz 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736
This theorem is referenced by:  elfz0add  13529  zpnn0elfzo  13641  ccatass  14495  ccatrn  14496  swrdccat2  14576  pfxccat1  14608  splfv1  14661  splval2  14663  revccat  14672  relexpaddg  14960  isercoll2  15576  iseraltlem2  15590  iseraltlem3  15591  mertenslem1  15791  eftlub  16018  vdwlem6  16898  gsumsgrpccat  18714  efginvrel2  19606  efgredleme  19622  efgcpbllemb  19634  geolim3  26245  sumcubes  42296  jm2.27c  42990  iunrelexpuztr  43702
  Copyright terms: Public domain W3C validator