MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzaddcl Structured version   Visualization version   GIF version

Theorem uzaddcl 12926
Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uzaddcl ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ𝑀))

Proof of Theorem uzaddcl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelcn 12872 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
2 nn0cn 12520 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
3 ax-1cn 11204 . . . . . . . . 9 1 ∈ ℂ
4 addass 11233 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
53, 4mp3an3 1446 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
61, 2, 5syl2anr 595 . . . . . . 7 ((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
76adantr 479 . . . . . 6 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
8 peano2uz 12923 . . . . . . 7 ((𝑁 + 𝑘) ∈ (ℤ𝑀) → ((𝑁 + 𝑘) + 1) ∈ (ℤ𝑀))
98adantl 480 . . . . . 6 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) ∈ (ℤ𝑀))
107, 9eqeltrrd 2830 . . . . 5 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))
1110exp31 418 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 𝑘) ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
1211a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑘) ∈ (ℤ𝑀)) → (𝑁 ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
131addridd 11452 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) = 𝑁)
1413eleq1d 2814 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 0) ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑀)))
1514ibir 267 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) ∈ (ℤ𝑀))
16 oveq2 7434 . . . . 5 (𝑗 = 0 → (𝑁 + 𝑗) = (𝑁 + 0))
1716eleq1d 2814 . . . 4 (𝑗 = 0 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 0) ∈ (ℤ𝑀)))
1817imbi2d 339 . . 3 (𝑗 = 0 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) ∈ (ℤ𝑀))))
19 oveq2 7434 . . . . 5 (𝑗 = 𝑘 → (𝑁 + 𝑗) = (𝑁 + 𝑘))
2019eleq1d 2814 . . . 4 (𝑗 = 𝑘 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 𝑘) ∈ (ℤ𝑀)))
2120imbi2d 339 . . 3 (𝑗 = 𝑘 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑘) ∈ (ℤ𝑀))))
22 oveq2 7434 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑁 + 𝑗) = (𝑁 + (𝑘 + 1)))
2322eleq1d 2814 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀)))
2423imbi2d 339 . . 3 (𝑗 = (𝑘 + 1) → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
25 oveq2 7434 . . . . 5 (𝑗 = 𝐾 → (𝑁 + 𝑗) = (𝑁 + 𝐾))
2625eleq1d 2814 . . . 4 (𝑗 = 𝐾 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 𝐾) ∈ (ℤ𝑀)))
2726imbi2d 339 . . 3 (𝑗 = 𝐾 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ𝑀))))
2812, 15, 18, 21, 24, 27nn0indALT 12696 . 2 (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ𝑀)))
2928impcom 406 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cfv 6553  (class class class)co 7426  cc 11144  0cc0 11146  1c1 11147   + caddc 11149  0cn0 12510  cuz 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861
This theorem is referenced by:  elfz0add  13640  zpnn0elfzo  13745  ccatass  14578  ccatrn  14579  swrdccat2  14659  pfxccat1  14692  splfv1  14745  splval2  14747  revccat  14756  relexpaddg  15040  isercoll2  15655  iseraltlem2  15669  iseraltlem3  15670  mertenslem1  15870  eftlub  16093  vdwlem6  16962  gsumsgrpccat  18799  efginvrel2  19689  efgredleme  19705  efgcpbllemb  19717  geolim3  26294  sumcubes  41904  jm2.27c  42459  iunrelexpuztr  43180
  Copyright terms: Public domain W3C validator