Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzaddcl | Structured version Visualization version GIF version |
Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
uzaddcl | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12640 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | |
2 | nn0cn 12289 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
3 | ax-1cn 10975 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
4 | addass 11004 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) | |
5 | 3, 4 | mp3an3 1450 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
6 | 1, 2, 5 | syl2anr 598 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
7 | 6 | adantr 482 | . . . . . 6 ⊢ (((𝑘 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
8 | peano2uz 12687 | . . . . . . 7 ⊢ ((𝑁 + 𝑘) ∈ (ℤ≥‘𝑀) → ((𝑁 + 𝑘) + 1) ∈ (ℤ≥‘𝑀)) | |
9 | 8 | adantl 483 | . . . . . 6 ⊢ (((𝑘 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) ∈ (ℤ≥‘𝑀)) |
10 | 7, 9 | eqeltrrd 2838 | . . . . 5 ⊢ (((𝑘 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → (𝑁 + (𝑘 + 1)) ∈ (ℤ≥‘𝑀)) |
11 | 10 | exp31 421 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 𝑘) ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ≥‘𝑀)))) |
12 | 11 | a2d 29 | . . 3 ⊢ (𝑘 ∈ ℕ0 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ≥‘𝑀)))) |
13 | 1 | addid1d 11221 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 0) = 𝑁) |
14 | 13 | eleq1d 2821 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 0) ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
15 | 14 | ibir 268 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 0) ∈ (ℤ≥‘𝑀)) |
16 | oveq2 7315 | . . . . 5 ⊢ (𝑗 = 0 → (𝑁 + 𝑗) = (𝑁 + 0)) | |
17 | 16 | eleq1d 2821 | . . . 4 ⊢ (𝑗 = 0 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 0) ∈ (ℤ≥‘𝑀))) |
18 | 17 | imbi2d 341 | . . 3 ⊢ (𝑗 = 0 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 0) ∈ (ℤ≥‘𝑀)))) |
19 | oveq2 7315 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑁 + 𝑗) = (𝑁 + 𝑘)) | |
20 | 19 | eleq1d 2821 | . . . 4 ⊢ (𝑗 = 𝑘 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀))) |
21 | 20 | imbi2d 341 | . . 3 ⊢ (𝑗 = 𝑘 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)))) |
22 | oveq2 7315 | . . . . 5 ⊢ (𝑗 = (𝑘 + 1) → (𝑁 + 𝑗) = (𝑁 + (𝑘 + 1))) | |
23 | 22 | eleq1d 2821 | . . . 4 ⊢ (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + (𝑘 + 1)) ∈ (ℤ≥‘𝑀))) |
24 | 23 | imbi2d 341 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ≥‘𝑀)))) |
25 | oveq2 7315 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑁 + 𝑗) = (𝑁 + 𝐾)) | |
26 | 25 | eleq1d 2821 | . . . 4 ⊢ (𝑗 = 𝐾 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀))) |
27 | 26 | imbi2d 341 | . . 3 ⊢ (𝑗 = 𝐾 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)))) |
28 | 12, 15, 18, 21, 24, 27 | nn0indALT 12462 | . 2 ⊢ (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀))) |
29 | 28 | impcom 409 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 0cc0 10917 1c1 10918 + caddc 10920 ℕ0cn0 12279 ℤ≥cuz 12628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 |
This theorem is referenced by: elfz0add 13401 zpnn0elfzo 13506 ccatass 14338 ccatrn 14339 swrdccat2 14427 pfxccat1 14460 splfv1 14513 splval2 14515 revccat 14524 relexpaddg 14809 isercoll2 15425 iseraltlem2 15439 iseraltlem3 15440 mertenslem1 15641 eftlub 15863 vdwlem6 16732 gsumsgrpccat 18523 gsumccatOLD 18524 efginvrel2 19378 efgredleme 19394 efgcpbllemb 19406 geolim3 25544 jm2.27c 40867 iunrelexpuztr 41365 |
Copyright terms: Public domain | W3C validator |