![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzaddcl | Structured version Visualization version GIF version |
Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
uzaddcl | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12870 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | |
2 | nn0cn 12518 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
3 | ax-1cn 11202 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
4 | addass 11231 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) | |
5 | 3, 4 | mp3an3 1446 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
6 | 1, 2, 5 | syl2anr 595 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
7 | 6 | adantr 479 | . . . . . 6 ⊢ (((𝑘 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
8 | peano2uz 12921 | . . . . . . 7 ⊢ ((𝑁 + 𝑘) ∈ (ℤ≥‘𝑀) → ((𝑁 + 𝑘) + 1) ∈ (ℤ≥‘𝑀)) | |
9 | 8 | adantl 480 | . . . . . 6 ⊢ (((𝑘 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) ∈ (ℤ≥‘𝑀)) |
10 | 7, 9 | eqeltrrd 2829 | . . . . 5 ⊢ (((𝑘 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → (𝑁 + (𝑘 + 1)) ∈ (ℤ≥‘𝑀)) |
11 | 10 | exp31 418 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 𝑘) ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ≥‘𝑀)))) |
12 | 11 | a2d 29 | . . 3 ⊢ (𝑘 ∈ ℕ0 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ≥‘𝑀)))) |
13 | 1 | addridd 11450 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 0) = 𝑁) |
14 | 13 | eleq1d 2813 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 0) ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
15 | 14 | ibir 267 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 0) ∈ (ℤ≥‘𝑀)) |
16 | oveq2 7432 | . . . . 5 ⊢ (𝑗 = 0 → (𝑁 + 𝑗) = (𝑁 + 0)) | |
17 | 16 | eleq1d 2813 | . . . 4 ⊢ (𝑗 = 0 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 0) ∈ (ℤ≥‘𝑀))) |
18 | 17 | imbi2d 339 | . . 3 ⊢ (𝑗 = 0 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 0) ∈ (ℤ≥‘𝑀)))) |
19 | oveq2 7432 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑁 + 𝑗) = (𝑁 + 𝑘)) | |
20 | 19 | eleq1d 2813 | . . . 4 ⊢ (𝑗 = 𝑘 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀))) |
21 | 20 | imbi2d 339 | . . 3 ⊢ (𝑗 = 𝑘 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)))) |
22 | oveq2 7432 | . . . . 5 ⊢ (𝑗 = (𝑘 + 1) → (𝑁 + 𝑗) = (𝑁 + (𝑘 + 1))) | |
23 | 22 | eleq1d 2813 | . . . 4 ⊢ (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + (𝑘 + 1)) ∈ (ℤ≥‘𝑀))) |
24 | 23 | imbi2d 339 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ≥‘𝑀)))) |
25 | oveq2 7432 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑁 + 𝑗) = (𝑁 + 𝐾)) | |
26 | 25 | eleq1d 2813 | . . . 4 ⊢ (𝑗 = 𝐾 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀))) |
27 | 26 | imbi2d 339 | . . 3 ⊢ (𝑗 = 𝐾 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)))) |
28 | 12, 15, 18, 21, 24, 27 | nn0indALT 12694 | . 2 ⊢ (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀))) |
29 | 28 | impcom 406 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6551 (class class class)co 7424 ℂcc 11142 0cc0 11144 1c1 11145 + caddc 11147 ℕ0cn0 12508 ℤ≥cuz 12858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 |
This theorem is referenced by: elfz0add 13638 zpnn0elfzo 13743 ccatass 14576 ccatrn 14577 swrdccat2 14657 pfxccat1 14690 splfv1 14743 splval2 14745 revccat 14754 relexpaddg 15038 isercoll2 15653 iseraltlem2 15667 iseraltlem3 15668 mertenslem1 15868 eftlub 16091 vdwlem6 16960 gsumsgrpccat 18797 efginvrel2 19687 efgredleme 19703 efgcpbllemb 19715 geolim3 26292 sumcubes 41876 jm2.27c 42431 iunrelexpuztr 43152 |
Copyright terms: Public domain | W3C validator |