MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnacl Structured version   Visualization version   GIF version

Theorem nnacl 8381
Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnacl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)

Proof of Theorem nnacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7260 . . . . 5 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
21eleq1d 2824 . . . 4 (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o 𝐵) ∈ ω))
32imbi2d 344 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 +o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 +o 𝐵) ∈ ω)))
4 oveq2 7260 . . . . 5 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
54eleq1d 2824 . . . 4 (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o ∅) ∈ ω))
6 oveq2 7260 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
76eleq1d 2824 . . . 4 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o 𝑦) ∈ ω))
8 oveq2 7260 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
98eleq1d 2824 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o suc 𝑦) ∈ ω))
10 nna0 8374 . . . . . 6 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
1110eleq1d 2824 . . . . 5 (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ ω ↔ 𝐴 ∈ ω))
1211ibir 271 . . . 4 (𝐴 ∈ ω → (𝐴 +o ∅) ∈ ω)
13 peano2 7708 . . . . . 6 ((𝐴 +o 𝑦) ∈ ω → suc (𝐴 +o 𝑦) ∈ ω)
14 nnasuc 8376 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
1514eleq1d 2824 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) ∈ ω ↔ suc (𝐴 +o 𝑦) ∈ ω))
1613, 15syl5ibr 249 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o suc 𝑦) ∈ ω))
1716expcom 417 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o suc 𝑦) ∈ ω)))
185, 7, 9, 12, 17finds2 7718 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 +o 𝑥) ∈ ω))
193, 18vtoclga 3504 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 +o 𝐵) ∈ ω))
2019impcom 411 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  c0 4254  suc csuc 6250  (class class class)co 7252  ωcom 7684   +o coa 8241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-oadd 8248
This theorem is referenced by:  nnmcl  8382  nnacli  8384  nnarcl  8386  nnaord  8389  nnawordi  8391  nnaass  8392  nndi  8393  nnaword  8397  nnawordex  8407  oaabslem  8414  unfilem1  8983  unfiOLD  8986  nnadju  9859  nnadjuALT  9860  ficardun  9862  ficardunOLD  9863  ficardun2  9864  ficardun2OLD  9865  pwsdompw  9866  addclpi  10554  hashgadd  13995  hashdom  13997  eldifsucnn  33572  ttrcltr  33677  finxpreclem4  35471
  Copyright terms: Public domain W3C validator