![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnacl | Structured version Visualization version GIF version |
Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnacl | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵)) | |
2 | 1 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o 𝐵) ∈ ω)) |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 +o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 +o 𝐵) ∈ ω))) |
4 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅)) | |
5 | 4 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o ∅) ∈ ω)) |
6 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | |
7 | 6 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o 𝑦) ∈ ω)) |
8 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦)) | |
9 | 8 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o suc 𝑦) ∈ ω)) |
10 | nna0 8660 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) | |
11 | 10 | eleq1d 2829 | . . . . 5 ⊢ (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ ω ↔ 𝐴 ∈ ω)) |
12 | 11 | ibir 268 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) ∈ ω) |
13 | peano2 7929 | . . . . . 6 ⊢ ((𝐴 +o 𝑦) ∈ ω → suc (𝐴 +o 𝑦) ∈ ω) | |
14 | nnasuc 8662 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) | |
15 | 14 | eleq1d 2829 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) ∈ ω ↔ suc (𝐴 +o 𝑦) ∈ ω)) |
16 | 13, 15 | imbitrrid 246 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o suc 𝑦) ∈ ω)) |
17 | 16 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o suc 𝑦) ∈ ω))) |
18 | 5, 7, 9, 12, 17 | finds2 7938 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 +o 𝑥) ∈ ω)) |
19 | 3, 18 | vtoclga 3589 | . 2 ⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 +o 𝐵) ∈ ω)) |
20 | 19 | impcom 407 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 suc csuc 6397 (class class class)co 7448 ωcom 7903 +o coa 8519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-oadd 8526 |
This theorem is referenced by: nnmcl 8668 nnacli 8670 nnarcl 8672 nnaord 8675 nnawordi 8677 nnaass 8678 nndi 8679 nnaword 8683 nnawordex 8693 oaabslem 8703 eldifsucnn 8720 omnaddcl 8759 unfilem1 9371 ttrcltr 9785 nnadju 10267 nnadjuALT 10268 ficardun 10270 ficardun2 10271 pwsdompw 10272 addclpi 10961 hashgadd 14426 hashdom 14428 precsexlem6 28254 precsexlem7 28255 om2noseqlt 28323 finxpreclem4 37360 nnamecl 43249 naddcnff 43324 naddwordnexlem3 43361 finona1cl 43415 |
Copyright terms: Public domain | W3C validator |