| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnacl | Structured version Visualization version GIF version | ||
| Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnacl | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7413 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵)) | |
| 2 | 1 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o 𝐵) ∈ ω)) |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 +o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 +o 𝐵) ∈ ω))) |
| 4 | oveq2 7413 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅)) | |
| 5 | 4 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o ∅) ∈ ω)) |
| 6 | oveq2 7413 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | |
| 7 | 6 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o 𝑦) ∈ ω)) |
| 8 | oveq2 7413 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦)) | |
| 9 | 8 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o suc 𝑦) ∈ ω)) |
| 10 | nna0 8616 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) | |
| 11 | 10 | eleq1d 2819 | . . . . 5 ⊢ (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ ω ↔ 𝐴 ∈ ω)) |
| 12 | 11 | ibir 268 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) ∈ ω) |
| 13 | peano2 7886 | . . . . . 6 ⊢ ((𝐴 +o 𝑦) ∈ ω → suc (𝐴 +o 𝑦) ∈ ω) | |
| 14 | nnasuc 8618 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) | |
| 15 | 14 | eleq1d 2819 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) ∈ ω ↔ suc (𝐴 +o 𝑦) ∈ ω)) |
| 16 | 13, 15 | imbitrrid 246 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o suc 𝑦) ∈ ω)) |
| 17 | 16 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o suc 𝑦) ∈ ω))) |
| 18 | 5, 7, 9, 12, 17 | finds2 7894 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 +o 𝑥) ∈ ω)) |
| 19 | 3, 18 | vtoclga 3556 | . 2 ⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 +o 𝐵) ∈ ω)) |
| 20 | 19 | impcom 407 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 suc csuc 6354 (class class class)co 7405 ωcom 7861 +o coa 8477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-oadd 8484 |
| This theorem is referenced by: nnmcl 8624 nnacli 8626 nnarcl 8628 nnaord 8631 nnawordi 8633 nnaass 8634 nndi 8635 nnaword 8639 nnawordex 8649 oaabslem 8659 eldifsucnn 8676 omnaddcl 8715 unfilem1 9315 ttrcltr 9730 nnadju 10212 nnadjuALT 10213 ficardun 10215 ficardun2 10216 pwsdompw 10217 addclpi 10906 hashgadd 14395 hashdom 14397 precsexlem6 28166 precsexlem7 28167 om2noseqlt 28245 finxpreclem4 37412 nnamecl 43311 naddcnff 43386 naddwordnexlem3 43423 finona1cl 43477 |
| Copyright terms: Public domain | W3C validator |