Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocnt Structured version   Visualization version   GIF version

Theorem f1ocnt 32698
Description: Given a countable set 𝐴, number its elements by providing a one-to-one mapping either with or an integer range starting from 1. The domain of the function can then be used with iundisjcnt 32694 or iundisj2cnt 32695. (Contributed by Thierry Arnoux, 25-Jul-2020.)
Assertion
Ref Expression
f1ocnt (𝐴 ≼ ω → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
Distinct variable group:   𝐴,𝑓

Proof of Theorem f1ocnt
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 f1o0 6819 . . . . . . 7 ∅:∅–1-1-onto→∅
2 eqidd 2730 . . . . . . . 8 (𝐴 = ∅ → ∅ = ∅)
3 dm0 5874 . . . . . . . . 9 dom ∅ = ∅
43a1i 11 . . . . . . . 8 (𝐴 = ∅ → dom ∅ = ∅)
5 id 22 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
62, 4, 5f1oeq123d 6776 . . . . . . 7 (𝐴 = ∅ → (∅:dom ∅–1-1-onto𝐴 ↔ ∅:∅–1-1-onto→∅))
71, 6mpbiri 258 . . . . . 6 (𝐴 = ∅ → ∅:dom ∅–1-1-onto𝐴)
8 fveq2 6840 . . . . . . . . . . . . 13 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
9 hash0 14308 . . . . . . . . . . . . 13 (♯‘∅) = 0
108, 9eqtrdi 2780 . . . . . . . . . . . 12 (𝐴 = ∅ → (♯‘𝐴) = 0)
1110oveq1d 7384 . . . . . . . . . . 11 (𝐴 = ∅ → ((♯‘𝐴) + 1) = (0 + 1))
12 0p1e1 12279 . . . . . . . . . . 11 (0 + 1) = 1
1311, 12eqtrdi 2780 . . . . . . . . . 10 (𝐴 = ∅ → ((♯‘𝐴) + 1) = 1)
1413oveq2d 7385 . . . . . . . . 9 (𝐴 = ∅ → (1..^((♯‘𝐴) + 1)) = (1..^1))
15 fzo0 13620 . . . . . . . . 9 (1..^1) = ∅
1614, 15eqtrdi 2780 . . . . . . . 8 (𝐴 = ∅ → (1..^((♯‘𝐴) + 1)) = ∅)
174, 16eqtr4d 2767 . . . . . . 7 (𝐴 = ∅ → dom ∅ = (1..^((♯‘𝐴) + 1)))
1817olcd 874 . . . . . 6 (𝐴 = ∅ → (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1))))
197, 18jca 511 . . . . 5 (𝐴 = ∅ → (∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))))
20 0ex 5257 . . . . . 6 ∅ ∈ V
21 id 22 . . . . . . . 8 (𝑓 = ∅ → 𝑓 = ∅)
22 dmeq 5857 . . . . . . . 8 (𝑓 = ∅ → dom 𝑓 = dom ∅)
23 eqidd 2730 . . . . . . . 8 (𝑓 = ∅ → 𝐴 = 𝐴)
2421, 22, 23f1oeq123d 6776 . . . . . . 7 (𝑓 = ∅ → (𝑓:dom 𝑓1-1-onto𝐴 ↔ ∅:dom ∅–1-1-onto𝐴))
2522eqeq1d 2731 . . . . . . . 8 (𝑓 = ∅ → (dom 𝑓 = ℕ ↔ dom ∅ = ℕ))
2622eqeq1d 2731 . . . . . . . 8 (𝑓 = ∅ → (dom 𝑓 = (1..^((♯‘𝐴) + 1)) ↔ dom ∅ = (1..^((♯‘𝐴) + 1))))
2725, 26orbi12d 918 . . . . . . 7 (𝑓 = ∅ → ((dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))) ↔ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))))
2824, 27anbi12d 632 . . . . . 6 (𝑓 = ∅ → ((𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))) ↔ (∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1))))))
2920, 28spcev 3569 . . . . 5 ((∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
3019, 29syl 17 . . . 4 (𝐴 = ∅ → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
3130adantl 481 . . 3 (((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) ∧ 𝐴 = ∅) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
32 f1odm 6786 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → dom 𝑓 = (1...(♯‘𝐴)))
3332f1oeq2d 6778 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
3433ibir 268 . . . . . . . . 9 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:dom 𝑓1-1-onto𝐴)
3534adantl 481 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:dom 𝑓1-1-onto𝐴)
3632adantl 481 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → dom 𝑓 = (1...(♯‘𝐴)))
37 simpl 482 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
3837nnzd 12532 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℤ)
39 fzval3 13671 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (1...(♯‘𝐴)) = (1..^((♯‘𝐴) + 1)))
4038, 39syl 17 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (1...(♯‘𝐴)) = (1..^((♯‘𝐴) + 1)))
4136, 40eqtrd 2764 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → dom 𝑓 = (1..^((♯‘𝐴) + 1)))
4241olcd 874 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))
4335, 42jca 511 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
4443ex 412 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))))
4544eximdv 1917 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))))
4645imp 406 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
4746adantl 481 . . 3 (((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) ∧ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
48 fz1f1o 15652 . . . 4 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
4948adantl 481 . . 3 ((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
5031, 47, 49mpjaodan 960 . 2 ((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
51 isfinite 9581 . . . . . . . . . 10 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
5251notbii 320 . . . . . . . . 9 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω)
5352biimpi 216 . . . . . . . 8 𝐴 ∈ Fin → ¬ 𝐴 ≺ ω)
5453anim2i 617 . . . . . . 7 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
55 bren2 8931 . . . . . . 7 (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
5654, 55sylibr 234 . . . . . 6 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ ω)
57 nnenom 13921 . . . . . . 7 ℕ ≈ ω
5857ensymi 8952 . . . . . 6 ω ≈ ℕ
59 entr 8954 . . . . . 6 ((𝐴 ≈ ω ∧ ω ≈ ℕ) → 𝐴 ≈ ℕ)
6056, 58, 59sylancl 586 . . . . 5 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ ℕ)
61 bren 8905 . . . . 5 (𝐴 ≈ ℕ ↔ ∃𝑔 𝑔:𝐴1-1-onto→ℕ)
6260, 61sylib 218 . . . 4 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑔 𝑔:𝐴1-1-onto→ℕ)
63 f1oexbi 7884 . . . 4 (∃𝑔 𝑔:𝐴1-1-onto→ℕ ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
6462, 63sylib 218 . . 3 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
65 f1odm 6786 . . . . . . 7 (𝑓:ℕ–1-1-onto𝐴 → dom 𝑓 = ℕ)
6665f1oeq2d 6778 . . . . . 6 (𝑓:ℕ–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴𝑓:ℕ–1-1-onto𝐴))
6766ibir 268 . . . . 5 (𝑓:ℕ–1-1-onto𝐴𝑓:dom 𝑓1-1-onto𝐴)
6865orcd 873 . . . . 5 (𝑓:ℕ–1-1-onto𝐴 → (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))
6967, 68jca 511 . . . 4 (𝑓:ℕ–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7069eximi 1835 . . 3 (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7164, 70syl 17 . 2 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7250, 71pm2.61dan 812 1 (𝐴 ≼ ω → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  c0 4292   class class class wbr 5102  dom cdm 5631  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  ωcom 7822  cen 8892  cdom 8893  csdm 8894  Fincfn 8895  0cc0 11044  1c1 11045   + caddc 11047  cn 12162  cz 12505  ...cfz 13444  ..^cfzo 13591  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator