Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocnt Structured version   Visualization version   GIF version

Theorem f1ocnt 32782
Description: Given a countable set 𝐴, number its elements by providing a one-to-one mapping either with or an integer range starting from 1. The domain of the function can then be used with iundisjcnt 32780 or iundisj2cnt 32781. (Contributed by Thierry Arnoux, 25-Jul-2020.)
Assertion
Ref Expression
f1ocnt (𝐴 ≼ ω → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
Distinct variable group:   𝐴,𝑓

Proof of Theorem f1ocnt
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 f1o0 6800 . . . . . . 7 ∅:∅–1-1-onto→∅
2 eqidd 2732 . . . . . . . 8 (𝐴 = ∅ → ∅ = ∅)
3 dm0 5859 . . . . . . . . 9 dom ∅ = ∅
43a1i 11 . . . . . . . 8 (𝐴 = ∅ → dom ∅ = ∅)
5 id 22 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
62, 4, 5f1oeq123d 6757 . . . . . . 7 (𝐴 = ∅ → (∅:dom ∅–1-1-onto𝐴 ↔ ∅:∅–1-1-onto→∅))
71, 6mpbiri 258 . . . . . 6 (𝐴 = ∅ → ∅:dom ∅–1-1-onto𝐴)
8 fveq2 6822 . . . . . . . . . . . . 13 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
9 hash0 14274 . . . . . . . . . . . . 13 (♯‘∅) = 0
108, 9eqtrdi 2782 . . . . . . . . . . . 12 (𝐴 = ∅ → (♯‘𝐴) = 0)
1110oveq1d 7361 . . . . . . . . . . 11 (𝐴 = ∅ → ((♯‘𝐴) + 1) = (0 + 1))
12 0p1e1 12242 . . . . . . . . . . 11 (0 + 1) = 1
1311, 12eqtrdi 2782 . . . . . . . . . 10 (𝐴 = ∅ → ((♯‘𝐴) + 1) = 1)
1413oveq2d 7362 . . . . . . . . 9 (𝐴 = ∅ → (1..^((♯‘𝐴) + 1)) = (1..^1))
15 fzo0 13583 . . . . . . . . 9 (1..^1) = ∅
1614, 15eqtrdi 2782 . . . . . . . 8 (𝐴 = ∅ → (1..^((♯‘𝐴) + 1)) = ∅)
174, 16eqtr4d 2769 . . . . . . 7 (𝐴 = ∅ → dom ∅ = (1..^((♯‘𝐴) + 1)))
1817olcd 874 . . . . . 6 (𝐴 = ∅ → (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1))))
197, 18jca 511 . . . . 5 (𝐴 = ∅ → (∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))))
20 0ex 5243 . . . . . 6 ∅ ∈ V
21 id 22 . . . . . . . 8 (𝑓 = ∅ → 𝑓 = ∅)
22 dmeq 5842 . . . . . . . 8 (𝑓 = ∅ → dom 𝑓 = dom ∅)
23 eqidd 2732 . . . . . . . 8 (𝑓 = ∅ → 𝐴 = 𝐴)
2421, 22, 23f1oeq123d 6757 . . . . . . 7 (𝑓 = ∅ → (𝑓:dom 𝑓1-1-onto𝐴 ↔ ∅:dom ∅–1-1-onto𝐴))
2522eqeq1d 2733 . . . . . . . 8 (𝑓 = ∅ → (dom 𝑓 = ℕ ↔ dom ∅ = ℕ))
2622eqeq1d 2733 . . . . . . . 8 (𝑓 = ∅ → (dom 𝑓 = (1..^((♯‘𝐴) + 1)) ↔ dom ∅ = (1..^((♯‘𝐴) + 1))))
2725, 26orbi12d 918 . . . . . . 7 (𝑓 = ∅ → ((dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))) ↔ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))))
2824, 27anbi12d 632 . . . . . 6 (𝑓 = ∅ → ((𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))) ↔ (∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1))))))
2920, 28spcev 3556 . . . . 5 ((∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
3019, 29syl 17 . . . 4 (𝐴 = ∅ → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
3130adantl 481 . . 3 (((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) ∧ 𝐴 = ∅) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
32 f1odm 6767 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → dom 𝑓 = (1...(♯‘𝐴)))
3332f1oeq2d 6759 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
3433ibir 268 . . . . . . . . 9 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:dom 𝑓1-1-onto𝐴)
3534adantl 481 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:dom 𝑓1-1-onto𝐴)
3632adantl 481 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → dom 𝑓 = (1...(♯‘𝐴)))
37 simpl 482 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
3837nnzd 12495 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℤ)
39 fzval3 13634 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (1...(♯‘𝐴)) = (1..^((♯‘𝐴) + 1)))
4038, 39syl 17 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (1...(♯‘𝐴)) = (1..^((♯‘𝐴) + 1)))
4136, 40eqtrd 2766 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → dom 𝑓 = (1..^((♯‘𝐴) + 1)))
4241olcd 874 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))
4335, 42jca 511 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
4443ex 412 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))))
4544eximdv 1918 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))))
4645imp 406 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
4746adantl 481 . . 3 (((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) ∧ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
48 fz1f1o 15617 . . . 4 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
4948adantl 481 . . 3 ((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
5031, 47, 49mpjaodan 960 . 2 ((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
51 isfinite 9542 . . . . . . . . . 10 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
5251notbii 320 . . . . . . . . 9 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω)
5352biimpi 216 . . . . . . . 8 𝐴 ∈ Fin → ¬ 𝐴 ≺ ω)
5453anim2i 617 . . . . . . 7 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
55 bren2 8905 . . . . . . 7 (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
5654, 55sylibr 234 . . . . . 6 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ ω)
57 nnenom 13887 . . . . . . 7 ℕ ≈ ω
5857ensymi 8926 . . . . . 6 ω ≈ ℕ
59 entr 8928 . . . . . 6 ((𝐴 ≈ ω ∧ ω ≈ ℕ) → 𝐴 ≈ ℕ)
6056, 58, 59sylancl 586 . . . . 5 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ ℕ)
61 bren 8879 . . . . 5 (𝐴 ≈ ℕ ↔ ∃𝑔 𝑔:𝐴1-1-onto→ℕ)
6260, 61sylib 218 . . . 4 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑔 𝑔:𝐴1-1-onto→ℕ)
63 f1oexbi 7858 . . . 4 (∃𝑔 𝑔:𝐴1-1-onto→ℕ ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
6462, 63sylib 218 . . 3 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
65 f1odm 6767 . . . . . . 7 (𝑓:ℕ–1-1-onto𝐴 → dom 𝑓 = ℕ)
6665f1oeq2d 6759 . . . . . 6 (𝑓:ℕ–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴𝑓:ℕ–1-1-onto𝐴))
6766ibir 268 . . . . 5 (𝑓:ℕ–1-1-onto𝐴𝑓:dom 𝑓1-1-onto𝐴)
6865orcd 873 . . . . 5 (𝑓:ℕ–1-1-onto𝐴 → (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))
6967, 68jca 511 . . . 4 (𝑓:ℕ–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7069eximi 1836 . . 3 (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7164, 70syl 17 . 2 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7250, 71pm2.61dan 812 1 (𝐴 ≼ ω → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  c0 4280   class class class wbr 5089  dom cdm 5614  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  ωcom 7796  cen 8866  cdom 8867  csdm 8868  Fincfn 8869  0cc0 11006  1c1 11007   + caddc 11009  cn 12125  cz 12468  ...cfz 13407  ..^cfzo 13554  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator