Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocnt Structured version   Visualization version   GIF version

Theorem f1ocnt 31025
Description: Given a countable set 𝐴, number its elements by providing a one-to-one mapping either with or an integer range starting from 1. The domain of the function can then be used with iundisjcnt 31021 or iundisj2cnt 31022. (Contributed by Thierry Arnoux, 25-Jul-2020.)
Assertion
Ref Expression
f1ocnt (𝐴 ≼ ω → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
Distinct variable group:   𝐴,𝑓

Proof of Theorem f1ocnt
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 f1o0 6736 . . . . . . 7 ∅:∅–1-1-onto→∅
2 eqidd 2739 . . . . . . . 8 (𝐴 = ∅ → ∅ = ∅)
3 dm0 5818 . . . . . . . . 9 dom ∅ = ∅
43a1i 11 . . . . . . . 8 (𝐴 = ∅ → dom ∅ = ∅)
5 id 22 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
62, 4, 5f1oeq123d 6694 . . . . . . 7 (𝐴 = ∅ → (∅:dom ∅–1-1-onto𝐴 ↔ ∅:∅–1-1-onto→∅))
71, 6mpbiri 257 . . . . . 6 (𝐴 = ∅ → ∅:dom ∅–1-1-onto𝐴)
8 fveq2 6756 . . . . . . . . . . . . 13 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
9 hash0 14010 . . . . . . . . . . . . 13 (♯‘∅) = 0
108, 9eqtrdi 2795 . . . . . . . . . . . 12 (𝐴 = ∅ → (♯‘𝐴) = 0)
1110oveq1d 7270 . . . . . . . . . . 11 (𝐴 = ∅ → ((♯‘𝐴) + 1) = (0 + 1))
12 0p1e1 12025 . . . . . . . . . . 11 (0 + 1) = 1
1311, 12eqtrdi 2795 . . . . . . . . . 10 (𝐴 = ∅ → ((♯‘𝐴) + 1) = 1)
1413oveq2d 7271 . . . . . . . . 9 (𝐴 = ∅ → (1..^((♯‘𝐴) + 1)) = (1..^1))
15 fzo0 13339 . . . . . . . . 9 (1..^1) = ∅
1614, 15eqtrdi 2795 . . . . . . . 8 (𝐴 = ∅ → (1..^((♯‘𝐴) + 1)) = ∅)
174, 16eqtr4d 2781 . . . . . . 7 (𝐴 = ∅ → dom ∅ = (1..^((♯‘𝐴) + 1)))
1817olcd 870 . . . . . 6 (𝐴 = ∅ → (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1))))
197, 18jca 511 . . . . 5 (𝐴 = ∅ → (∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))))
20 0ex 5226 . . . . . 6 ∅ ∈ V
21 id 22 . . . . . . . 8 (𝑓 = ∅ → 𝑓 = ∅)
22 dmeq 5801 . . . . . . . 8 (𝑓 = ∅ → dom 𝑓 = dom ∅)
23 eqidd 2739 . . . . . . . 8 (𝑓 = ∅ → 𝐴 = 𝐴)
2421, 22, 23f1oeq123d 6694 . . . . . . 7 (𝑓 = ∅ → (𝑓:dom 𝑓1-1-onto𝐴 ↔ ∅:dom ∅–1-1-onto𝐴))
2522eqeq1d 2740 . . . . . . . 8 (𝑓 = ∅ → (dom 𝑓 = ℕ ↔ dom ∅ = ℕ))
2622eqeq1d 2740 . . . . . . . 8 (𝑓 = ∅ → (dom 𝑓 = (1..^((♯‘𝐴) + 1)) ↔ dom ∅ = (1..^((♯‘𝐴) + 1))))
2725, 26orbi12d 915 . . . . . . 7 (𝑓 = ∅ → ((dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))) ↔ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))))
2824, 27anbi12d 630 . . . . . 6 (𝑓 = ∅ → ((𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))) ↔ (∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1))))))
2920, 28spcev 3535 . . . . 5 ((∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
3019, 29syl 17 . . . 4 (𝐴 = ∅ → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
3130adantl 481 . . 3 (((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) ∧ 𝐴 = ∅) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
32 f1odm 6704 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → dom 𝑓 = (1...(♯‘𝐴)))
3332f1oeq2d 6696 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
3433ibir 267 . . . . . . . . 9 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:dom 𝑓1-1-onto𝐴)
3534adantl 481 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:dom 𝑓1-1-onto𝐴)
3632adantl 481 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → dom 𝑓 = (1...(♯‘𝐴)))
37 simpl 482 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
3837nnzd 12354 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℤ)
39 fzval3 13384 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (1...(♯‘𝐴)) = (1..^((♯‘𝐴) + 1)))
4038, 39syl 17 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (1...(♯‘𝐴)) = (1..^((♯‘𝐴) + 1)))
4136, 40eqtrd 2778 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → dom 𝑓 = (1..^((♯‘𝐴) + 1)))
4241olcd 870 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))
4335, 42jca 511 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
4443ex 412 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))))
4544eximdv 1921 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))))
4645imp 406 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
4746adantl 481 . . 3 (((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) ∧ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
48 fz1f1o 15350 . . . 4 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
4948adantl 481 . . 3 ((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
5031, 47, 49mpjaodan 955 . 2 ((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
51 isfinite 9340 . . . . . . . . . 10 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
5251notbii 319 . . . . . . . . 9 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω)
5352biimpi 215 . . . . . . . 8 𝐴 ∈ Fin → ¬ 𝐴 ≺ ω)
5453anim2i 616 . . . . . . 7 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
55 bren2 8726 . . . . . . 7 (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
5654, 55sylibr 233 . . . . . 6 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ ω)
57 nnenom 13628 . . . . . . 7 ℕ ≈ ω
5857ensymi 8745 . . . . . 6 ω ≈ ℕ
59 entr 8747 . . . . . 6 ((𝐴 ≈ ω ∧ ω ≈ ℕ) → 𝐴 ≈ ℕ)
6056, 58, 59sylancl 585 . . . . 5 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ ℕ)
61 bren 8701 . . . . 5 (𝐴 ≈ ℕ ↔ ∃𝑔 𝑔:𝐴1-1-onto→ℕ)
6260, 61sylib 217 . . . 4 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑔 𝑔:𝐴1-1-onto→ℕ)
63 f1oexbi 7749 . . . 4 (∃𝑔 𝑔:𝐴1-1-onto→ℕ ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
6462, 63sylib 217 . . 3 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
65 f1odm 6704 . . . . . . 7 (𝑓:ℕ–1-1-onto𝐴 → dom 𝑓 = ℕ)
6665f1oeq2d 6696 . . . . . 6 (𝑓:ℕ–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴𝑓:ℕ–1-1-onto𝐴))
6766ibir 267 . . . . 5 (𝑓:ℕ–1-1-onto𝐴𝑓:dom 𝑓1-1-onto𝐴)
6865orcd 869 . . . . 5 (𝑓:ℕ–1-1-onto𝐴 → (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))
6967, 68jca 511 . . . 4 (𝑓:ℕ–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7069eximi 1838 . . 3 (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7164, 70syl 17 . 2 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7250, 71pm2.61dan 809 1 (𝐴 ≼ ω → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  c0 4253   class class class wbr 5070  dom cdm 5580  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  ωcom 7687  cen 8688  cdom 8689  csdm 8690  Fincfn 8691  0cc0 10802  1c1 10803   + caddc 10805  cn 11903  cz 12249  ...cfz 13168  ..^cfzo 13311  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator