Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocnt Structured version   Visualization version   GIF version

Theorem f1ocnt 31123
Description: Given a countable set 𝐴, number its elements by providing a one-to-one mapping either with or an integer range starting from 1. The domain of the function can then be used with iundisjcnt 31119 or iundisj2cnt 31120. (Contributed by Thierry Arnoux, 25-Jul-2020.)
Assertion
Ref Expression
f1ocnt (𝐴 ≼ ω → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
Distinct variable group:   𝐴,𝑓

Proof of Theorem f1ocnt
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 f1o0 6753 . . . . . . 7 ∅:∅–1-1-onto→∅
2 eqidd 2739 . . . . . . . 8 (𝐴 = ∅ → ∅ = ∅)
3 dm0 5829 . . . . . . . . 9 dom ∅ = ∅
43a1i 11 . . . . . . . 8 (𝐴 = ∅ → dom ∅ = ∅)
5 id 22 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
62, 4, 5f1oeq123d 6710 . . . . . . 7 (𝐴 = ∅ → (∅:dom ∅–1-1-onto𝐴 ↔ ∅:∅–1-1-onto→∅))
71, 6mpbiri 257 . . . . . 6 (𝐴 = ∅ → ∅:dom ∅–1-1-onto𝐴)
8 fveq2 6774 . . . . . . . . . . . . 13 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
9 hash0 14082 . . . . . . . . . . . . 13 (♯‘∅) = 0
108, 9eqtrdi 2794 . . . . . . . . . . . 12 (𝐴 = ∅ → (♯‘𝐴) = 0)
1110oveq1d 7290 . . . . . . . . . . 11 (𝐴 = ∅ → ((♯‘𝐴) + 1) = (0 + 1))
12 0p1e1 12095 . . . . . . . . . . 11 (0 + 1) = 1
1311, 12eqtrdi 2794 . . . . . . . . . 10 (𝐴 = ∅ → ((♯‘𝐴) + 1) = 1)
1413oveq2d 7291 . . . . . . . . 9 (𝐴 = ∅ → (1..^((♯‘𝐴) + 1)) = (1..^1))
15 fzo0 13411 . . . . . . . . 9 (1..^1) = ∅
1614, 15eqtrdi 2794 . . . . . . . 8 (𝐴 = ∅ → (1..^((♯‘𝐴) + 1)) = ∅)
174, 16eqtr4d 2781 . . . . . . 7 (𝐴 = ∅ → dom ∅ = (1..^((♯‘𝐴) + 1)))
1817olcd 871 . . . . . 6 (𝐴 = ∅ → (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1))))
197, 18jca 512 . . . . 5 (𝐴 = ∅ → (∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))))
20 0ex 5231 . . . . . 6 ∅ ∈ V
21 id 22 . . . . . . . 8 (𝑓 = ∅ → 𝑓 = ∅)
22 dmeq 5812 . . . . . . . 8 (𝑓 = ∅ → dom 𝑓 = dom ∅)
23 eqidd 2739 . . . . . . . 8 (𝑓 = ∅ → 𝐴 = 𝐴)
2421, 22, 23f1oeq123d 6710 . . . . . . 7 (𝑓 = ∅ → (𝑓:dom 𝑓1-1-onto𝐴 ↔ ∅:dom ∅–1-1-onto𝐴))
2522eqeq1d 2740 . . . . . . . 8 (𝑓 = ∅ → (dom 𝑓 = ℕ ↔ dom ∅ = ℕ))
2622eqeq1d 2740 . . . . . . . 8 (𝑓 = ∅ → (dom 𝑓 = (1..^((♯‘𝐴) + 1)) ↔ dom ∅ = (1..^((♯‘𝐴) + 1))))
2725, 26orbi12d 916 . . . . . . 7 (𝑓 = ∅ → ((dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))) ↔ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))))
2824, 27anbi12d 631 . . . . . 6 (𝑓 = ∅ → ((𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))) ↔ (∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1))))))
2920, 28spcev 3545 . . . . 5 ((∅:dom ∅–1-1-onto𝐴 ∧ (dom ∅ = ℕ ∨ dom ∅ = (1..^((♯‘𝐴) + 1)))) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
3019, 29syl 17 . . . 4 (𝐴 = ∅ → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
3130adantl 482 . . 3 (((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) ∧ 𝐴 = ∅) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
32 f1odm 6720 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → dom 𝑓 = (1...(♯‘𝐴)))
3332f1oeq2d 6712 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
3433ibir 267 . . . . . . . . 9 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:dom 𝑓1-1-onto𝐴)
3534adantl 482 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:dom 𝑓1-1-onto𝐴)
3632adantl 482 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → dom 𝑓 = (1...(♯‘𝐴)))
37 simpl 483 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
3837nnzd 12425 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℤ)
39 fzval3 13456 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (1...(♯‘𝐴)) = (1..^((♯‘𝐴) + 1)))
4038, 39syl 17 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (1...(♯‘𝐴)) = (1..^((♯‘𝐴) + 1)))
4136, 40eqtrd 2778 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → dom 𝑓 = (1..^((♯‘𝐴) + 1)))
4241olcd 871 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))
4335, 42jca 512 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
4443ex 413 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))))
4544eximdv 1920 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))))
4645imp 407 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
4746adantl 482 . . 3 (((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) ∧ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
48 fz1f1o 15422 . . . 4 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
4948adantl 482 . . 3 ((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
5031, 47, 49mpjaodan 956 . 2 ((𝐴 ≼ ω ∧ 𝐴 ∈ Fin) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
51 isfinite 9410 . . . . . . . . . 10 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
5251notbii 320 . . . . . . . . 9 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω)
5352biimpi 215 . . . . . . . 8 𝐴 ∈ Fin → ¬ 𝐴 ≺ ω)
5453anim2i 617 . . . . . . 7 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
55 bren2 8771 . . . . . . 7 (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
5654, 55sylibr 233 . . . . . 6 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ ω)
57 nnenom 13700 . . . . . . 7 ℕ ≈ ω
5857ensymi 8790 . . . . . 6 ω ≈ ℕ
59 entr 8792 . . . . . 6 ((𝐴 ≈ ω ∧ ω ≈ ℕ) → 𝐴 ≈ ℕ)
6056, 58, 59sylancl 586 . . . . 5 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ ℕ)
61 bren 8743 . . . . 5 (𝐴 ≈ ℕ ↔ ∃𝑔 𝑔:𝐴1-1-onto→ℕ)
6260, 61sylib 217 . . . 4 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑔 𝑔:𝐴1-1-onto→ℕ)
63 f1oexbi 7775 . . . 4 (∃𝑔 𝑔:𝐴1-1-onto→ℕ ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
6462, 63sylib 217 . . 3 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
65 f1odm 6720 . . . . . . 7 (𝑓:ℕ–1-1-onto𝐴 → dom 𝑓 = ℕ)
6665f1oeq2d 6712 . . . . . 6 (𝑓:ℕ–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴𝑓:ℕ–1-1-onto𝐴))
6766ibir 267 . . . . 5 (𝑓:ℕ–1-1-onto𝐴𝑓:dom 𝑓1-1-onto𝐴)
6865orcd 870 . . . . 5 (𝑓:ℕ–1-1-onto𝐴 → (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))
6967, 68jca 512 . . . 4 (𝑓:ℕ–1-1-onto𝐴 → (𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7069eximi 1837 . . 3 (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7164, 70syl 17 . 2 ((𝐴 ≼ ω ∧ ¬ 𝐴 ∈ Fin) → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
7250, 71pm2.61dan 810 1 (𝐴 ≼ ω → ∃𝑓(𝑓:dom 𝑓1-1-onto𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  c0 4256   class class class wbr 5074  dom cdm 5589  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  cen 8730  cdom 8731  csdm 8732  Fincfn 8733  0cc0 10871  1c1 10872   + caddc 10874  cn 11973  cz 12319  ...cfz 13239  ..^cfzo 13382  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator