MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcof Structured version   Visualization version   GIF version

Theorem cfcof 10288
Description: If there is a cofinal map from 𝐴 to 𝐵, then they have the same cofinality. This was used as Definition 11.1 of [TakeutiZaring] p. 100, who defines an equivalence relation cof (𝐴, 𝐵) and defines our cf(𝐵) as the minimum 𝐵 such that cof (𝐴, 𝐵). (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
cfcof ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) = (cf‘𝐵)))
Distinct variable groups:   𝑤,𝑓,𝑧,𝐴   𝐵,𝑓,𝑤,𝑧

Proof of Theorem cfcof
Dummy variables 𝑐 𝑔 𝑘 𝑟 𝑠 𝑡 𝑥 𝑦 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfcoflem 10286 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
21imp 406 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) ⊆ (cf‘𝐵))
3 cff1 10272 . . . . . . 7 (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
4 f1f 6774 . . . . . . . . 9 (𝑔:(cf‘𝐴)–1-1𝐴𝑔:(cf‘𝐴)⟶𝐴)
54anim1i 615 . . . . . . . 8 ((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)) → (𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
65eximi 1835 . . . . . . 7 (∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)) → ∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
73, 6syl 17 . . . . . 6 (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
8 eqid 2735 . . . . . . 7 (𝑦 ∈ (cf‘𝐴) ↦ {𝑣𝐵 ∣ (𝑔𝑦) ⊆ (𝑓𝑣)}) = (𝑦 ∈ (cf‘𝐴) ↦ {𝑣𝐵 ∣ (𝑔𝑦) ⊆ (𝑓𝑣)})
98coftr 10287 . . . . . 6 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)) → ∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡))))
107, 9syl5com 31 . . . . 5 (𝐴 ∈ On → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → ∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡))))
11 eloni 6362 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
12 cfon 10269 . . . . . . 7 (cf‘𝐴) ∈ On
13 eqid 2735 . . . . . . . 8 {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)} = {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)}
14 eqid 2735 . . . . . . . 8 {𝑐 ∈ (cf‘𝐴) ∣ 𝑟 ⊆ (𝑐)} = {𝑐 ∈ (cf‘𝐴) ∣ 𝑟 ⊆ (𝑐)}
15 eqid 2735 . . . . . . . 8 OrdIso( E , {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)}) = OrdIso( E , {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)})
1613, 14, 15cofsmo 10283 . . . . . . 7 ((Ord 𝐵 ∧ (cf‘𝐴) ∈ On) → (∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡)) → ∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))))
1711, 12, 16sylancl 586 . . . . . 6 (𝐵 ∈ On → (∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡)) → ∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))))
1812onsuci 7833 . . . . . . . . . . 11 suc (cf‘𝐴) ∈ On
1918oneli 6468 . . . . . . . . . 10 (𝑐 ∈ suc (cf‘𝐴) → 𝑐 ∈ On)
20 cfflb 10273 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑐 ∈ On) → (∃𝑘(𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (cf‘𝐵) ⊆ 𝑐))
2119, 20sylan2 593 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) → (∃𝑘(𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (cf‘𝐵) ⊆ 𝑐))
22 3simpb 1149 . . . . . . . . . 10 ((𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)))
2322eximi 1835 . . . . . . . . 9 (∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → ∃𝑘(𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)))
2421, 23impel 505 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))) → (cf‘𝐵) ⊆ 𝑐)
25 onsssuc 6444 . . . . . . . . . . 11 ((𝑐 ∈ On ∧ (cf‘𝐴) ∈ On) → (𝑐 ⊆ (cf‘𝐴) ↔ 𝑐 ∈ suc (cf‘𝐴)))
2619, 12, 25sylancl 586 . . . . . . . . . 10 (𝑐 ∈ suc (cf‘𝐴) → (𝑐 ⊆ (cf‘𝐴) ↔ 𝑐 ∈ suc (cf‘𝐴)))
2726ibir 268 . . . . . . . . 9 (𝑐 ∈ suc (cf‘𝐴) → 𝑐 ⊆ (cf‘𝐴))
2827ad2antlr 727 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))) → 𝑐 ⊆ (cf‘𝐴))
2924, 28sstrd 3969 . . . . . . 7 (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))) → (cf‘𝐵) ⊆ (cf‘𝐴))
3029rexlimdva2 3143 . . . . . 6 (𝐵 ∈ On → (∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (cf‘𝐵) ⊆ (cf‘𝐴)))
3117, 30syld 47 . . . . 5 (𝐵 ∈ On → (∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡)) → (cf‘𝐵) ⊆ (cf‘𝐴)))
3210, 31sylan9 507 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐵) ⊆ (cf‘𝐴)))
3332imp 406 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐵) ⊆ (cf‘𝐴))
342, 33eqssd 3976 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) = (cf‘𝐵))
3534ex 412 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) = (cf‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  {crab 3415  wss 3926   cint 4922  cmpt 5201   E cep 5552  Ord word 6351  Oncon0 6352  suc csuc 6354  wf 6527  1-1wf1 6528  cfv 6531  Smo wsmo 8359  OrdIsocoi 9523  cfccf 9951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-smo 8360  df-recs 8385  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-oi 9524  df-card 9953  df-cf 9955  df-acn 9956
This theorem is referenced by:  alephsing  10290
  Copyright terms: Public domain W3C validator