| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cfcoflem 10312 | . . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (cf‘𝐴) ⊆ (cf‘𝐵))) | 
| 2 | 1 | imp 406 | . . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (cf‘𝐴) ⊆ (cf‘𝐵)) | 
| 3 |  | cff1 10298 | . . . . . . 7
⊢ (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡))) | 
| 4 |  | f1f 6804 | . . . . . . . . 9
⊢ (𝑔:(cf‘𝐴)–1-1→𝐴 → 𝑔:(cf‘𝐴)⟶𝐴) | 
| 5 | 4 | anim1i 615 | . . . . . . . 8
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡)) → (𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡))) | 
| 6 | 5 | eximi 1835 | . . . . . . 7
⊢
(∃𝑔(𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡)) → ∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡))) | 
| 7 | 3, 6 | syl 17 | . . . . . 6
⊢ (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡))) | 
| 8 |  | eqid 2737 | . . . . . . 7
⊢ (𝑦 ∈ (cf‘𝐴) ↦ ∩ {𝑣
∈ 𝐵 ∣ (𝑔‘𝑦) ⊆ (𝑓‘𝑣)}) = (𝑦 ∈ (cf‘𝐴) ↦ ∩
{𝑣 ∈ 𝐵 ∣ (𝑔‘𝑦) ⊆ (𝑓‘𝑣)}) | 
| 9 | 8 | coftr 10313 | . . . . . 6
⊢
(∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡)) → ∃ℎ(ℎ:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (ℎ‘𝑡)))) | 
| 10 | 7, 9 | syl5com 31 | . . . . 5
⊢ (𝐴 ∈ On → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → ∃ℎ(ℎ:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (ℎ‘𝑡)))) | 
| 11 |  | eloni 6394 | . . . . . . 7
⊢ (𝐵 ∈ On → Ord 𝐵) | 
| 12 |  | cfon 10295 | . . . . . . 7
⊢
(cf‘𝐴) ∈
On | 
| 13 |  | eqid 2737 | . . . . . . . 8
⊢ {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡 ∈ 𝑥 (ℎ‘𝑡) ∈ (ℎ‘𝑥)} = {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡 ∈ 𝑥 (ℎ‘𝑡) ∈ (ℎ‘𝑥)} | 
| 14 |  | eqid 2737 | . . . . . . . 8
⊢ ∩ {𝑐
∈ (cf‘𝐴) ∣
𝑟 ⊆ (ℎ‘𝑐)} = ∩ {𝑐 ∈ (cf‘𝐴) ∣ 𝑟 ⊆ (ℎ‘𝑐)} | 
| 15 |  | eqid 2737 | . . . . . . . 8
⊢ OrdIso( E
, {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡 ∈ 𝑥 (ℎ‘𝑡) ∈ (ℎ‘𝑥)}) = OrdIso( E , {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡 ∈ 𝑥 (ℎ‘𝑡) ∈ (ℎ‘𝑥)}) | 
| 16 | 13, 14, 15 | cofsmo 10309 | . . . . . . 7
⊢ ((Ord
𝐵 ∧ (cf‘𝐴) ∈ On) →
(∃ℎ(ℎ:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (ℎ‘𝑡)) → ∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)))) | 
| 17 | 11, 12, 16 | sylancl 586 | . . . . . 6
⊢ (𝐵 ∈ On → (∃ℎ(ℎ:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (ℎ‘𝑡)) → ∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)))) | 
| 18 | 12 | onsuci 7859 | . . . . . . . . . . 11
⊢ suc
(cf‘𝐴) ∈
On | 
| 19 | 18 | oneli 6498 | . . . . . . . . . 10
⊢ (𝑐 ∈ suc (cf‘𝐴) → 𝑐 ∈ On) | 
| 20 |  | cfflb 10299 | . . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝑐 ∈ On) → (∃𝑘(𝑘:𝑐⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)) → (cf‘𝐵) ⊆ 𝑐)) | 
| 21 | 19, 20 | sylan2 593 | . . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) → (∃𝑘(𝑘:𝑐⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)) → (cf‘𝐵) ⊆ 𝑐)) | 
| 22 |  | 3simpb 1150 | . . . . . . . . . 10
⊢ ((𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)) → (𝑘:𝑐⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠))) | 
| 23 | 22 | eximi 1835 | . . . . . . . . 9
⊢
(∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)) → ∃𝑘(𝑘:𝑐⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠))) | 
| 24 | 21, 23 | impel 505 | . . . . . . . 8
⊢ (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠))) → (cf‘𝐵) ⊆ 𝑐) | 
| 25 |  | onsssuc 6474 | . . . . . . . . . . 11
⊢ ((𝑐 ∈ On ∧ (cf‘𝐴) ∈ On) → (𝑐 ⊆ (cf‘𝐴) ↔ 𝑐 ∈ suc (cf‘𝐴))) | 
| 26 | 19, 12, 25 | sylancl 586 | . . . . . . . . . 10
⊢ (𝑐 ∈ suc (cf‘𝐴) → (𝑐 ⊆ (cf‘𝐴) ↔ 𝑐 ∈ suc (cf‘𝐴))) | 
| 27 | 26 | ibir 268 | . . . . . . . . 9
⊢ (𝑐 ∈ suc (cf‘𝐴) → 𝑐 ⊆ (cf‘𝐴)) | 
| 28 | 27 | ad2antlr 727 | . . . . . . . 8
⊢ (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠))) → 𝑐 ⊆ (cf‘𝐴)) | 
| 29 | 24, 28 | sstrd 3994 | . . . . . . 7
⊢ (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠))) → (cf‘𝐵) ⊆ (cf‘𝐴)) | 
| 30 | 29 | rexlimdva2 3157 | . . . . . 6
⊢ (𝐵 ∈ On → (∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)) → (cf‘𝐵) ⊆ (cf‘𝐴))) | 
| 31 | 17, 30 | syld 47 | . . . . 5
⊢ (𝐵 ∈ On → (∃ℎ(ℎ:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (ℎ‘𝑡)) → (cf‘𝐵) ⊆ (cf‘𝐴))) | 
| 32 | 10, 31 | sylan9 507 | . . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (cf‘𝐵) ⊆ (cf‘𝐴))) | 
| 33 | 32 | imp 406 | . . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (cf‘𝐵) ⊆ (cf‘𝐴)) | 
| 34 | 2, 33 | eqssd 4001 | . 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (cf‘𝐴) = (cf‘𝐵)) | 
| 35 | 34 | ex 412 | 1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (cf‘𝐴) = (cf‘𝐵))) |