MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcof Structured version   Visualization version   GIF version

Theorem cfcof 10227
Description: If there is a cofinal map from 𝐴 to 𝐵, then they have the same cofinality. This was used as Definition 11.1 of [TakeutiZaring] p. 100, who defines an equivalence relation cof (𝐴, 𝐵) and defines our cf(𝐵) as the minimum 𝐵 such that cof (𝐴, 𝐵). (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
cfcof ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) = (cf‘𝐵)))
Distinct variable groups:   𝑤,𝑓,𝑧,𝐴   𝐵,𝑓,𝑤,𝑧

Proof of Theorem cfcof
Dummy variables 𝑐 𝑔 𝑘 𝑟 𝑠 𝑡 𝑥 𝑦 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfcoflem 10225 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
21imp 406 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) ⊆ (cf‘𝐵))
3 cff1 10211 . . . . . . 7 (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
4 f1f 6756 . . . . . . . . 9 (𝑔:(cf‘𝐴)–1-1𝐴𝑔:(cf‘𝐴)⟶𝐴)
54anim1i 615 . . . . . . . 8 ((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)) → (𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
65eximi 1835 . . . . . . 7 (∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)) → ∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
73, 6syl 17 . . . . . 6 (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
8 eqid 2729 . . . . . . 7 (𝑦 ∈ (cf‘𝐴) ↦ {𝑣𝐵 ∣ (𝑔𝑦) ⊆ (𝑓𝑣)}) = (𝑦 ∈ (cf‘𝐴) ↦ {𝑣𝐵 ∣ (𝑔𝑦) ⊆ (𝑓𝑣)})
98coftr 10226 . . . . . 6 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)) → ∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡))))
107, 9syl5com 31 . . . . 5 (𝐴 ∈ On → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → ∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡))))
11 eloni 6342 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
12 cfon 10208 . . . . . . 7 (cf‘𝐴) ∈ On
13 eqid 2729 . . . . . . . 8 {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)} = {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)}
14 eqid 2729 . . . . . . . 8 {𝑐 ∈ (cf‘𝐴) ∣ 𝑟 ⊆ (𝑐)} = {𝑐 ∈ (cf‘𝐴) ∣ 𝑟 ⊆ (𝑐)}
15 eqid 2729 . . . . . . . 8 OrdIso( E , {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)}) = OrdIso( E , {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)})
1613, 14, 15cofsmo 10222 . . . . . . 7 ((Ord 𝐵 ∧ (cf‘𝐴) ∈ On) → (∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡)) → ∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))))
1711, 12, 16sylancl 586 . . . . . 6 (𝐵 ∈ On → (∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡)) → ∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))))
1812onsuci 7814 . . . . . . . . . . 11 suc (cf‘𝐴) ∈ On
1918oneli 6448 . . . . . . . . . 10 (𝑐 ∈ suc (cf‘𝐴) → 𝑐 ∈ On)
20 cfflb 10212 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑐 ∈ On) → (∃𝑘(𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (cf‘𝐵) ⊆ 𝑐))
2119, 20sylan2 593 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) → (∃𝑘(𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (cf‘𝐵) ⊆ 𝑐))
22 3simpb 1149 . . . . . . . . . 10 ((𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)))
2322eximi 1835 . . . . . . . . 9 (∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → ∃𝑘(𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)))
2421, 23impel 505 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))) → (cf‘𝐵) ⊆ 𝑐)
25 onsssuc 6424 . . . . . . . . . . 11 ((𝑐 ∈ On ∧ (cf‘𝐴) ∈ On) → (𝑐 ⊆ (cf‘𝐴) ↔ 𝑐 ∈ suc (cf‘𝐴)))
2619, 12, 25sylancl 586 . . . . . . . . . 10 (𝑐 ∈ suc (cf‘𝐴) → (𝑐 ⊆ (cf‘𝐴) ↔ 𝑐 ∈ suc (cf‘𝐴)))
2726ibir 268 . . . . . . . . 9 (𝑐 ∈ suc (cf‘𝐴) → 𝑐 ⊆ (cf‘𝐴))
2827ad2antlr 727 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))) → 𝑐 ⊆ (cf‘𝐴))
2924, 28sstrd 3957 . . . . . . 7 (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))) → (cf‘𝐵) ⊆ (cf‘𝐴))
3029rexlimdva2 3136 . . . . . 6 (𝐵 ∈ On → (∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (cf‘𝐵) ⊆ (cf‘𝐴)))
3117, 30syld 47 . . . . 5 (𝐵 ∈ On → (∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡)) → (cf‘𝐵) ⊆ (cf‘𝐴)))
3210, 31sylan9 507 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐵) ⊆ (cf‘𝐴)))
3332imp 406 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐵) ⊆ (cf‘𝐴))
342, 33eqssd 3964 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) = (cf‘𝐵))
3534ex 412 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) = (cf‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914   cint 4910  cmpt 5188   E cep 5537  Ord word 6331  Oncon0 6332  suc csuc 6334  wf 6507  1-1wf1 6508  cfv 6511  Smo wsmo 8314  OrdIsocoi 9462  cfccf 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-smo 8315  df-recs 8340  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-oi 9463  df-card 9892  df-cf 9894  df-acn 9895
This theorem is referenced by:  alephsing  10229
  Copyright terms: Public domain W3C validator