MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcof Structured version   Visualization version   GIF version

Theorem cfcof 10030
Description: If there is a cofinal map from 𝐴 to 𝐵, then they have the same cofinality. This was used as Definition 11.1 of [TakeutiZaring] p. 100, who defines an equivalence relation cof (𝐴, 𝐵) and defines our cf(𝐵) as the minimum 𝐵 such that cof (𝐴, 𝐵). (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
cfcof ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) = (cf‘𝐵)))
Distinct variable groups:   𝑤,𝑓,𝑧,𝐴   𝐵,𝑓,𝑤,𝑧

Proof of Theorem cfcof
Dummy variables 𝑐 𝑔 𝑘 𝑟 𝑠 𝑡 𝑥 𝑦 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfcoflem 10028 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
21imp 407 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) ⊆ (cf‘𝐵))
3 cff1 10014 . . . . . . 7 (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
4 f1f 6670 . . . . . . . . 9 (𝑔:(cf‘𝐴)–1-1𝐴𝑔:(cf‘𝐴)⟶𝐴)
54anim1i 615 . . . . . . . 8 ((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)) → (𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
65eximi 1837 . . . . . . 7 (∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)) → ∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
73, 6syl 17 . . . . . 6 (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)))
8 eqid 2738 . . . . . . 7 (𝑦 ∈ (cf‘𝐴) ↦ {𝑣𝐵 ∣ (𝑔𝑦) ⊆ (𝑓𝑣)}) = (𝑦 ∈ (cf‘𝐴) ↦ {𝑣𝐵 ∣ (𝑔𝑦) ⊆ (𝑓𝑣)})
98coftr 10029 . . . . . 6 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠𝐴𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔𝑡)) → ∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡))))
107, 9syl5com 31 . . . . 5 (𝐴 ∈ On → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → ∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡))))
11 eloni 6276 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
12 cfon 10011 . . . . . . 7 (cf‘𝐴) ∈ On
13 eqid 2738 . . . . . . . 8 {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)} = {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)}
14 eqid 2738 . . . . . . . 8 {𝑐 ∈ (cf‘𝐴) ∣ 𝑟 ⊆ (𝑐)} = {𝑐 ∈ (cf‘𝐴) ∣ 𝑟 ⊆ (𝑐)}
15 eqid 2738 . . . . . . . 8 OrdIso( E , {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)}) = OrdIso( E , {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡𝑥 (𝑡) ∈ (𝑥)})
1613, 14, 15cofsmo 10025 . . . . . . 7 ((Ord 𝐵 ∧ (cf‘𝐴) ∈ On) → (∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡)) → ∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))))
1711, 12, 16sylancl 586 . . . . . 6 (𝐵 ∈ On → (∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡)) → ∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))))
1812onsuci 7685 . . . . . . . . . . 11 suc (cf‘𝐴) ∈ On
1918oneli 6374 . . . . . . . . . 10 (𝑐 ∈ suc (cf‘𝐴) → 𝑐 ∈ On)
20 cfflb 10015 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑐 ∈ On) → (∃𝑘(𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (cf‘𝐵) ⊆ 𝑐))
2119, 20sylan2 593 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) → (∃𝑘(𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (cf‘𝐵) ⊆ 𝑐))
22 3simpb 1148 . . . . . . . . . 10 ((𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)))
2322eximi 1837 . . . . . . . . 9 (∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → ∃𝑘(𝑘:𝑐𝐵 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)))
2421, 23impel 506 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))) → (cf‘𝐵) ⊆ 𝑐)
25 onsssuc 6353 . . . . . . . . . . 11 ((𝑐 ∈ On ∧ (cf‘𝐴) ∈ On) → (𝑐 ⊆ (cf‘𝐴) ↔ 𝑐 ∈ suc (cf‘𝐴)))
2619, 12, 25sylancl 586 . . . . . . . . . 10 (𝑐 ∈ suc (cf‘𝐴) → (𝑐 ⊆ (cf‘𝐴) ↔ 𝑐 ∈ suc (cf‘𝐴)))
2726ibir 267 . . . . . . . . 9 (𝑐 ∈ suc (cf‘𝐴) → 𝑐 ⊆ (cf‘𝐴))
2827ad2antlr 724 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))) → 𝑐 ⊆ (cf‘𝐴))
2924, 28sstrd 3931 . . . . . . 7 (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠))) → (cf‘𝐵) ⊆ (cf‘𝐴))
3029rexlimdva2 3216 . . . . . 6 (𝐵 ∈ On → (∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐𝐵 ∧ Smo 𝑘 ∧ ∀𝑟𝐵𝑠𝑐 𝑟 ⊆ (𝑘𝑠)) → (cf‘𝐵) ⊆ (cf‘𝐴)))
3117, 30syld 47 . . . . 5 (𝐵 ∈ On → (∃(:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟𝐵𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (𝑡)) → (cf‘𝐵) ⊆ (cf‘𝐴)))
3210, 31sylan9 508 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐵) ⊆ (cf‘𝐴)))
3332imp 407 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐵) ⊆ (cf‘𝐴))
342, 33eqssd 3938 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) = (cf‘𝐵))
3534ex 413 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) = (cf‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887   cint 4879  cmpt 5157   E cep 5494  Ord word 6265  Oncon0 6266  suc csuc 6268  wf 6429  1-1wf1 6430  cfv 6433  Smo wsmo 8176  OrdIsocoi 9268  cfccf 9695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-smo 8177  df-recs 8202  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-oi 9269  df-card 9697  df-cf 9699  df-acn 9700
This theorem is referenced by:  alephsing  10032
  Copyright terms: Public domain W3C validator