| Step | Hyp | Ref
| Expression |
| 1 | | cfcoflem 10286 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (cf‘𝐴) ⊆ (cf‘𝐵))) |
| 2 | 1 | imp 406 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (cf‘𝐴) ⊆ (cf‘𝐵)) |
| 3 | | cff1 10272 |
. . . . . . 7
⊢ (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡))) |
| 4 | | f1f 6774 |
. . . . . . . . 9
⊢ (𝑔:(cf‘𝐴)–1-1→𝐴 → 𝑔:(cf‘𝐴)⟶𝐴) |
| 5 | 4 | anim1i 615 |
. . . . . . . 8
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡)) → (𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡))) |
| 6 | 5 | eximi 1835 |
. . . . . . 7
⊢
(∃𝑔(𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡)) → ∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡))) |
| 7 | 3, 6 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡))) |
| 8 | | eqid 2735 |
. . . . . . 7
⊢ (𝑦 ∈ (cf‘𝐴) ↦ ∩ {𝑣
∈ 𝐵 ∣ (𝑔‘𝑦) ⊆ (𝑓‘𝑣)}) = (𝑦 ∈ (cf‘𝐴) ↦ ∩
{𝑣 ∈ 𝐵 ∣ (𝑔‘𝑦) ⊆ (𝑓‘𝑣)}) |
| 9 | 8 | coftr 10287 |
. . . . . 6
⊢
(∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (∃𝑔(𝑔:(cf‘𝐴)⟶𝐴 ∧ ∀𝑠 ∈ 𝐴 ∃𝑡 ∈ (cf‘𝐴)𝑠 ⊆ (𝑔‘𝑡)) → ∃ℎ(ℎ:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (ℎ‘𝑡)))) |
| 10 | 7, 9 | syl5com 31 |
. . . . 5
⊢ (𝐴 ∈ On → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → ∃ℎ(ℎ:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (ℎ‘𝑡)))) |
| 11 | | eloni 6362 |
. . . . . . 7
⊢ (𝐵 ∈ On → Ord 𝐵) |
| 12 | | cfon 10269 |
. . . . . . 7
⊢
(cf‘𝐴) ∈
On |
| 13 | | eqid 2735 |
. . . . . . . 8
⊢ {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡 ∈ 𝑥 (ℎ‘𝑡) ∈ (ℎ‘𝑥)} = {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡 ∈ 𝑥 (ℎ‘𝑡) ∈ (ℎ‘𝑥)} |
| 14 | | eqid 2735 |
. . . . . . . 8
⊢ ∩ {𝑐
∈ (cf‘𝐴) ∣
𝑟 ⊆ (ℎ‘𝑐)} = ∩ {𝑐 ∈ (cf‘𝐴) ∣ 𝑟 ⊆ (ℎ‘𝑐)} |
| 15 | | eqid 2735 |
. . . . . . . 8
⊢ OrdIso( E
, {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡 ∈ 𝑥 (ℎ‘𝑡) ∈ (ℎ‘𝑥)}) = OrdIso( E , {𝑥 ∈ (cf‘𝐴) ∣ ∀𝑡 ∈ 𝑥 (ℎ‘𝑡) ∈ (ℎ‘𝑥)}) |
| 16 | 13, 14, 15 | cofsmo 10283 |
. . . . . . 7
⊢ ((Ord
𝐵 ∧ (cf‘𝐴) ∈ On) →
(∃ℎ(ℎ:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (ℎ‘𝑡)) → ∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)))) |
| 17 | 11, 12, 16 | sylancl 586 |
. . . . . 6
⊢ (𝐵 ∈ On → (∃ℎ(ℎ:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (ℎ‘𝑡)) → ∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)))) |
| 18 | 12 | onsuci 7833 |
. . . . . . . . . . 11
⊢ suc
(cf‘𝐴) ∈
On |
| 19 | 18 | oneli 6468 |
. . . . . . . . . 10
⊢ (𝑐 ∈ suc (cf‘𝐴) → 𝑐 ∈ On) |
| 20 | | cfflb 10273 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝑐 ∈ On) → (∃𝑘(𝑘:𝑐⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)) → (cf‘𝐵) ⊆ 𝑐)) |
| 21 | 19, 20 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) → (∃𝑘(𝑘:𝑐⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)) → (cf‘𝐵) ⊆ 𝑐)) |
| 22 | | 3simpb 1149 |
. . . . . . . . . 10
⊢ ((𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)) → (𝑘:𝑐⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠))) |
| 23 | 22 | eximi 1835 |
. . . . . . . . 9
⊢
(∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)) → ∃𝑘(𝑘:𝑐⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠))) |
| 24 | 21, 23 | impel 505 |
. . . . . . . 8
⊢ (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠))) → (cf‘𝐵) ⊆ 𝑐) |
| 25 | | onsssuc 6444 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ On ∧ (cf‘𝐴) ∈ On) → (𝑐 ⊆ (cf‘𝐴) ↔ 𝑐 ∈ suc (cf‘𝐴))) |
| 26 | 19, 12, 25 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝑐 ∈ suc (cf‘𝐴) → (𝑐 ⊆ (cf‘𝐴) ↔ 𝑐 ∈ suc (cf‘𝐴))) |
| 27 | 26 | ibir 268 |
. . . . . . . . 9
⊢ (𝑐 ∈ suc (cf‘𝐴) → 𝑐 ⊆ (cf‘𝐴)) |
| 28 | 27 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠))) → 𝑐 ⊆ (cf‘𝐴)) |
| 29 | 24, 28 | sstrd 3969 |
. . . . . . 7
⊢ (((𝐵 ∈ On ∧ 𝑐 ∈ suc (cf‘𝐴)) ∧ ∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠))) → (cf‘𝐵) ⊆ (cf‘𝐴)) |
| 30 | 29 | rexlimdva2 3143 |
. . . . . 6
⊢ (𝐵 ∈ On → (∃𝑐 ∈ suc (cf‘𝐴)∃𝑘(𝑘:𝑐⟶𝐵 ∧ Smo 𝑘 ∧ ∀𝑟 ∈ 𝐵 ∃𝑠 ∈ 𝑐 𝑟 ⊆ (𝑘‘𝑠)) → (cf‘𝐵) ⊆ (cf‘𝐴))) |
| 31 | 17, 30 | syld 47 |
. . . . 5
⊢ (𝐵 ∈ On → (∃ℎ(ℎ:(cf‘𝐴)⟶𝐵 ∧ ∀𝑟 ∈ 𝐵 ∃𝑡 ∈ (cf‘𝐴)𝑟 ⊆ (ℎ‘𝑡)) → (cf‘𝐵) ⊆ (cf‘𝐴))) |
| 32 | 10, 31 | sylan9 507 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (cf‘𝐵) ⊆ (cf‘𝐴))) |
| 33 | 32 | imp 406 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (cf‘𝐵) ⊆ (cf‘𝐴)) |
| 34 | 2, 33 | eqssd 3976 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (cf‘𝐴) = (cf‘𝐵)) |
| 35 | 34 | ex 412 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (cf‘𝐴) = (cf‘𝐵))) |