Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem25 Structured version   Visualization version   GIF version

Theorem etransclem25 40993
Description: 𝑃 factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem25.p (𝜑𝑃 ∈ ℕ)
etransclem25.m (𝜑𝑀 ∈ ℕ0)
etransclem25.n (𝜑𝑁 ∈ ℕ0)
etransclem25.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem25.sumc (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐶𝑗) = 𝑁)
etransclem25.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem25.j (𝜑𝐽 ∈ (1...𝑀))
Assertion
Ref Expression
etransclem25 (𝜑 → (!‘𝑃) ∥ 𝑇)
Distinct variable groups:   𝐶,𝑗   𝑗,𝐽   𝑗,𝑀   𝑃,𝑗   𝜑,𝑗
Allowed substitution hints:   𝑇(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem25
StepHypRef Expression
1 etransclem25.p . . . . . . 7 (𝜑𝑃 ∈ ℕ)
21nnnn0d 11553 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
32faccld 13275 . . . . 5 (𝜑 → (!‘𝑃) ∈ ℕ)
43nnzd 11683 . . . 4 (𝜑 → (!‘𝑃) ∈ ℤ)
5 etransclem25.sumc . . . . . . . . . 10 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐶𝑗) = 𝑁)
65eqcomd 2777 . . . . . . . . 9 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐶𝑗))
76fveq2d 6336 . . . . . . . 8 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐶𝑗)))
87oveq1d 6808 . . . . . . 7 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐶𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))))
9 nfcv 2913 . . . . . . . 8 𝑗𝐶
10 fzfid 12980 . . . . . . . 8 (𝜑 → (0...𝑀) ∈ Fin)
11 etransclem25.c . . . . . . . . 9 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
12 nn0ex 11500 . . . . . . . . . . 11 0 ∈ V
13 fzssnn0 40049 . . . . . . . . . . 11 (0...𝑁) ⊆ ℕ0
14 mapss 8054 . . . . . . . . . . 11 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀)))
1512, 13, 14mp2an 664 . . . . . . . . . 10 ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀))
16 ovex 6823 . . . . . . . . . . . 12 (0...𝑁) ∈ V
17 ovexd 6825 . . . . . . . . . . . 12 (𝐶:(0...𝑀)⟶(0...𝑁) → (0...𝑀) ∈ V)
18 elmapg 8022 . . . . . . . . . . . 12 (((0...𝑁) ∈ V ∧ (0...𝑀) ∈ V) → (𝐶 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ↔ 𝐶:(0...𝑀)⟶(0...𝑁)))
1916, 17, 18sylancr 567 . . . . . . . . . . 11 (𝐶:(0...𝑀)⟶(0...𝑁) → (𝐶 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ↔ 𝐶:(0...𝑀)⟶(0...𝑁)))
2019ibir 257 . . . . . . . . . 10 (𝐶:(0...𝑀)⟶(0...𝑁) → 𝐶 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
2115, 20sseldi 3750 . . . . . . . . 9 (𝐶:(0...𝑀)⟶(0...𝑁) → 𝐶 ∈ (ℕ0𝑚 (0...𝑀)))
2211, 21syl 17 . . . . . . . 8 (𝜑𝐶 ∈ (ℕ0𝑚 (0...𝑀)))
239, 10, 22mccl 40348 . . . . . . 7 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐶𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℕ)
248, 23eqeltrd 2850 . . . . . 6 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℕ)
2524nnzd 11683 . . . . 5 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℤ)
26 etransclem25.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
27 etransclem25.j . . . . . . 7 (𝜑𝐽 ∈ (1...𝑀))
2827elfzelzd 40046 . . . . . 6 (𝜑𝐽 ∈ ℤ)
291, 26, 11, 28etransclem10 40978 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)
3025, 29zmulcld 11690 . . . 4 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) ∈ ℤ)
31 fzfid 12980 . . . . 5 (𝜑 → (1...𝑀) ∈ Fin)
321adantr 466 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
3311adantr 466 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐶:(0...𝑀)⟶(0...𝑁))
34 0z 11590 . . . . . . . . 9 0 ∈ ℤ
35 fzp1ss 12599 . . . . . . . . 9 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
3634, 35ax-mp 5 . . . . . . . 8 ((0 + 1)...𝑀) ⊆ (0...𝑀)
37 id 22 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (1...𝑀))
38 1e0p1 11754 . . . . . . . . . 10 1 = (0 + 1)
3938oveq1i 6803 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
4037, 39syl6eleq 2860 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
4136, 40sseldi 3750 . . . . . . 7 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
4241adantl 467 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
4328adantr 466 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
4432, 33, 42, 43etransclem3 40971 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
4531, 44fprodzcl 14891 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
464, 30, 453jca 1122 . . 3 (𝜑 → ((!‘𝑃) ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ))
4728zcnd 11685 . . . . . . . . . . 11 (𝜑𝐽 ∈ ℂ)
4847subidd 10582 . . . . . . . . . 10 (𝜑 → (𝐽𝐽) = 0)
4948eqcomd 2777 . . . . . . . . 9 (𝜑 → 0 = (𝐽𝐽))
5049oveq1d 6808 . . . . . . . 8 (𝜑 → (0↑(𝑃 − (𝐶𝐽))) = ((𝐽𝐽)↑(𝑃 − (𝐶𝐽))))
5150oveq2d 6809 . . . . . . 7 (𝜑 → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐽𝐽)↑(𝑃 − (𝐶𝐽)))))
5251ifeq2d 4244 . . . . . 6 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐽𝐽)↑(𝑃 − (𝐶𝐽))))))
53 id 22 . . . . . . . . . 10 (𝐽 ∈ (1...𝑀) → 𝐽 ∈ (1...𝑀))
5453, 39syl6eleq 2860 . . . . . . . . 9 (𝐽 ∈ (1...𝑀) → 𝐽 ∈ ((0 + 1)...𝑀))
5536, 54sseldi 3750 . . . . . . . 8 (𝐽 ∈ (1...𝑀) → 𝐽 ∈ (0...𝑀))
5627, 55syl 17 . . . . . . 7 (𝜑𝐽 ∈ (0...𝑀))
571, 11, 56, 28etransclem3 40971 . . . . . 6 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐽𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)
5852, 57eqeltrd 2850 . . . . 5 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)
59 fzfi 12979 . . . . . . 7 (1...𝑀) ∈ Fin
60 diffi 8348 . . . . . . 7 ((1...𝑀) ∈ Fin → ((1...𝑀) ∖ {𝐽}) ∈ Fin)
6159, 60mp1i 13 . . . . . 6 (𝜑 → ((1...𝑀) ∖ {𝐽}) ∈ Fin)
621adantr 466 . . . . . . 7 ((𝜑𝑗 ∈ ((1...𝑀) ∖ {𝐽})) → 𝑃 ∈ ℕ)
6311adantr 466 . . . . . . 7 ((𝜑𝑗 ∈ ((1...𝑀) ∖ {𝐽})) → 𝐶:(0...𝑀)⟶(0...𝑁))
64 eldifi 3883 . . . . . . . . 9 (𝑗 ∈ ((1...𝑀) ∖ {𝐽}) → 𝑗 ∈ (1...𝑀))
6564, 41syl 17 . . . . . . . 8 (𝑗 ∈ ((1...𝑀) ∖ {𝐽}) → 𝑗 ∈ (0...𝑀))
6665adantl 467 . . . . . . 7 ((𝜑𝑗 ∈ ((1...𝑀) ∖ {𝐽})) → 𝑗 ∈ (0...𝑀))
6728adantr 466 . . . . . . 7 ((𝜑𝑗 ∈ ((1...𝑀) ∖ {𝐽})) → 𝐽 ∈ ℤ)
6862, 63, 66, 67etransclem3 40971 . . . . . 6 ((𝜑𝑗 ∈ ((1...𝑀) ∖ {𝐽})) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
6961, 68fprodzcl 14891 . . . . 5 (𝜑 → ∏𝑗 ∈ ((1...𝑀) ∖ {𝐽})if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
70 dvds0 15206 . . . . . . . . 9 ((!‘𝑃) ∈ ℤ → (!‘𝑃) ∥ 0)
714, 70syl 17 . . . . . . . 8 (𝜑 → (!‘𝑃) ∥ 0)
7271adantr 466 . . . . . . 7 ((𝜑𝑃 < (𝐶𝐽)) → (!‘𝑃) ∥ 0)
73 iftrue 4231 . . . . . . . . 9 (𝑃 < (𝐶𝐽) → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) = 0)
7473eqcomd 2777 . . . . . . . 8 (𝑃 < (𝐶𝐽) → 0 = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
7574adantl 467 . . . . . . 7 ((𝜑𝑃 < (𝐶𝐽)) → 0 = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
7672, 75breqtrd 4812 . . . . . 6 ((𝜑𝑃 < (𝐶𝐽)) → (!‘𝑃) ∥ if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
77 iddvds 15204 . . . . . . . . . 10 ((!‘𝑃) ∈ ℤ → (!‘𝑃) ∥ (!‘𝑃))
784, 77syl 17 . . . . . . . . 9 (𝜑 → (!‘𝑃) ∥ (!‘𝑃))
7978ad2antrr 697 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ 𝑃 = (𝐶𝐽)) → (!‘𝑃) ∥ (!‘𝑃))
80 iffalse 4234 . . . . . . . . . 10 𝑃 < (𝐶𝐽) → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))))
8180ad2antlr 698 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ 𝑃 = (𝐶𝐽)) → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))))
82 oveq1 6800 . . . . . . . . . . . . . . . . . 18 (𝑃 = (𝐶𝐽) → (𝑃 − (𝐶𝐽)) = ((𝐶𝐽) − (𝐶𝐽)))
8382adantl 467 . . . . . . . . . . . . . . . . 17 ((𝜑𝑃 = (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) = ((𝐶𝐽) − (𝐶𝐽)))
8411, 56ffvelrnd 6503 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶𝐽) ∈ (0...𝑁))
8584elfzelzd 40046 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐶𝐽) ∈ ℤ)
8685zcnd 11685 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐶𝐽) ∈ ℂ)
8786adantr 466 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑃 = (𝐶𝐽)) → (𝐶𝐽) ∈ ℂ)
8887subidd 10582 . . . . . . . . . . . . . . . . 17 ((𝜑𝑃 = (𝐶𝐽)) → ((𝐶𝐽) − (𝐶𝐽)) = 0)
8983, 88eqtrd 2805 . . . . . . . . . . . . . . . 16 ((𝜑𝑃 = (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) = 0)
9089fveq2d 6336 . . . . . . . . . . . . . . 15 ((𝜑𝑃 = (𝐶𝐽)) → (!‘(𝑃 − (𝐶𝐽))) = (!‘0))
91 fac0 13267 . . . . . . . . . . . . . . 15 (!‘0) = 1
9290, 91syl6eq 2821 . . . . . . . . . . . . . 14 ((𝜑𝑃 = (𝐶𝐽)) → (!‘(𝑃 − (𝐶𝐽))) = 1)
9392oveq2d 6809 . . . . . . . . . . . . 13 ((𝜑𝑃 = (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) = ((!‘𝑃) / 1))
943nncnd 11238 . . . . . . . . . . . . . . 15 (𝜑 → (!‘𝑃) ∈ ℂ)
9594div1d 10995 . . . . . . . . . . . . . 14 (𝜑 → ((!‘𝑃) / 1) = (!‘𝑃))
9695adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑃 = (𝐶𝐽)) → ((!‘𝑃) / 1) = (!‘𝑃))
9793, 96eqtrd 2805 . . . . . . . . . . . 12 ((𝜑𝑃 = (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) = (!‘𝑃))
9889oveq2d 6809 . . . . . . . . . . . . 13 ((𝜑𝑃 = (𝐶𝐽)) → (0↑(𝑃 − (𝐶𝐽))) = (0↑0))
99 0cnd 10235 . . . . . . . . . . . . . 14 ((𝜑𝑃 = (𝐶𝐽)) → 0 ∈ ℂ)
10099exp0d 13209 . . . . . . . . . . . . 13 ((𝜑𝑃 = (𝐶𝐽)) → (0↑0) = 1)
10198, 100eqtrd 2805 . . . . . . . . . . . 12 ((𝜑𝑃 = (𝐶𝐽)) → (0↑(𝑃 − (𝐶𝐽))) = 1)
10297, 101oveq12d 6811 . . . . . . . . . . 11 ((𝜑𝑃 = (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = ((!‘𝑃) · 1))
10394mulid1d 10259 . . . . . . . . . . . 12 (𝜑 → ((!‘𝑃) · 1) = (!‘𝑃))
104103adantr 466 . . . . . . . . . . 11 ((𝜑𝑃 = (𝐶𝐽)) → ((!‘𝑃) · 1) = (!‘𝑃))
105102, 104eqtrd 2805 . . . . . . . . . 10 ((𝜑𝑃 = (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = (!‘𝑃))
106105adantlr 686 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ 𝑃 = (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = (!‘𝑃))
10781, 106eqtr2d 2806 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ 𝑃 = (𝐶𝐽)) → (!‘𝑃) = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
10879, 107breqtrd 4812 . . . . . . 7 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ 𝑃 = (𝐶𝐽)) → (!‘𝑃) ∥ if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
10971ad2antrr 697 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (!‘𝑃) ∥ 0)
110 simpr 471 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ¬ 𝑃 < (𝐶𝐽))
111110adantr 466 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → ¬ 𝑃 < (𝐶𝐽))
112111iffalsed 4236 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))))
113 simpll 742 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → 𝜑)
11485zred 11684 . . . . . . . . . . . 12 (𝜑 → (𝐶𝐽) ∈ ℝ)
115114ad2antrr 697 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (𝐶𝐽) ∈ ℝ)
1161nnred 11237 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
117116ad2antrr 697 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → 𝑃 ∈ ℝ)
118114adantr 466 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ∈ ℝ)
119116adantr 466 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℝ)
120118, 119, 110nltled 10389 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ≤ 𝑃)
121120adantr 466 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (𝐶𝐽) ≤ 𝑃)
122 neqne 2951 . . . . . . . . . . . 12 𝑃 = (𝐶𝐽) → 𝑃 ≠ (𝐶𝐽))
123122adantl 467 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → 𝑃 ≠ (𝐶𝐽))
124115, 117, 121, 123leneltd 10393 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (𝐶𝐽) < 𝑃)
1251nnzd 11683 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
126125adantr 466 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → 𝑃 ∈ ℤ)
12785adantr 466 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝐶𝐽) ∈ ℤ)
128126, 127zsubcld 11689 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝑃 − (𝐶𝐽)) ∈ ℤ)
129 simpr 471 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝐶𝐽) < 𝑃)
130114adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝐶𝐽) ∈ ℝ)
131116adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → 𝑃 ∈ ℝ)
132130, 131posdifd 10816 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → ((𝐶𝐽) < 𝑃 ↔ 0 < (𝑃 − (𝐶𝐽))))
133129, 132mpbid 222 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → 0 < (𝑃 − (𝐶𝐽)))
134 elnnz 11589 . . . . . . . . . . . . . 14 ((𝑃 − (𝐶𝐽)) ∈ ℕ ↔ ((𝑃 − (𝐶𝐽)) ∈ ℤ ∧ 0 < (𝑃 − (𝐶𝐽))))
135128, 133, 134sylanbrc 564 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝑃 − (𝐶𝐽)) ∈ ℕ)
1361350expd 13231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (0↑(𝑃 − (𝐶𝐽))) = 0)
137136oveq2d 6809 . . . . . . . . . . 11 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · 0))
13894adantr 466 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (!‘𝑃) ∈ ℂ)
139135nnnn0d 11553 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝑃 − (𝐶𝐽)) ∈ ℕ0)
140139faccld 13275 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (!‘(𝑃 − (𝐶𝐽))) ∈ ℕ)
141140nncnd 11238 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (!‘(𝑃 − (𝐶𝐽))) ∈ ℂ)
142140nnne0d 11267 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (!‘(𝑃 − (𝐶𝐽))) ≠ 0)
143138, 141, 142divcld 11003 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℂ)
144143mul01d 10437 . . . . . . . . . . 11 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · 0) = 0)
145137, 144eqtrd 2805 . . . . . . . . . 10 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = 0)
146113, 124, 145syl2anc 565 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = 0)
147112, 146eqtr2d 2806 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → 0 = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
148109, 147breqtrd 4812 . . . . . . 7 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (!‘𝑃) ∥ if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
149108, 148pm2.61dan 796 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (!‘𝑃) ∥ if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
15076, 149pm2.61dan 796 . . . . 5 (𝜑 → (!‘𝑃) ∥ if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
1514, 58, 69, 150dvdsmultr1d 15229 . . . 4 (𝜑 → (!‘𝑃) ∥ (if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) · ∏𝑗 ∈ ((1...𝑀) ∖ {𝐽})if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
15244zcnd 11685 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℂ)
153 fveq2 6332 . . . . . . . 8 (𝑗 = 𝐽 → (𝐶𝑗) = (𝐶𝐽))
154153breq2d 4798 . . . . . . 7 (𝑗 = 𝐽 → (𝑃 < (𝐶𝑗) ↔ 𝑃 < (𝐶𝐽)))
155154adantl 467 . . . . . 6 ((𝜑𝑗 = 𝐽) → (𝑃 < (𝐶𝑗) ↔ 𝑃 < (𝐶𝐽)))
156153oveq2d 6809 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑃 − (𝐶𝑗)) = (𝑃 − (𝐶𝐽)))
157156fveq2d 6336 . . . . . . . . 9 (𝑗 = 𝐽 → (!‘(𝑃 − (𝐶𝑗))) = (!‘(𝑃 − (𝐶𝐽))))
158157oveq2d 6809 . . . . . . . 8 (𝑗 = 𝐽 → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))))
159158adantl 467 . . . . . . 7 ((𝜑𝑗 = 𝐽) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))))
160 oveq2 6801 . . . . . . . . 9 (𝑗 = 𝐽 → (𝐽𝑗) = (𝐽𝐽))
161160, 48sylan9eqr 2827 . . . . . . . 8 ((𝜑𝑗 = 𝐽) → (𝐽𝑗) = 0)
162156adantl 467 . . . . . . . 8 ((𝜑𝑗 = 𝐽) → (𝑃 − (𝐶𝑗)) = (𝑃 − (𝐶𝐽)))
163161, 162oveq12d 6811 . . . . . . 7 ((𝜑𝑗 = 𝐽) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) = (0↑(𝑃 − (𝐶𝐽))))
164159, 163oveq12d 6811 . . . . . 6 ((𝜑𝑗 = 𝐽) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))))
165155, 164ifbieq2d 4250 . . . . 5 ((𝜑𝑗 = 𝐽) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
16631, 152, 27, 165fprodsplit1 40343 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = (if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) · ∏𝑗 ∈ ((1...𝑀) ∖ {𝐽})if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
167151, 166breqtrrd 4814 . . 3 (𝜑 → (!‘𝑃) ∥ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))
168 dvdsmultr2 15230 . . 3 (((!‘𝑃) ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ) → ((!‘𝑃) ∥ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) → (!‘𝑃) ∥ ((((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))))
16946, 167, 168sylc 65 . 2 (𝜑 → (!‘𝑃) ∥ ((((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
170 etransclem25.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
171170faccld 13275 . . . . . 6 (𝜑 → (!‘𝑁) ∈ ℕ)
172171nncnd 11238 . . . . 5 (𝜑 → (!‘𝑁) ∈ ℂ)
17311ffvelrnda 6502 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
17413, 173sseldi 3750 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ ℕ0)
175174faccld 13275 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℕ)
176175nncnd 11238 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℂ)
17710, 176fprodcl 14889 . . . . 5 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ∈ ℂ)
178175nnne0d 11267 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ≠ 0)
17910, 176, 178fprodn0 14916 . . . . 5 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ≠ 0)
180172, 177, 179divcld 11003 . . . 4 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℂ)
18129zcnd 11685 . . . 4 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℂ)
18231, 152fprodcl 14889 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℂ)
183180, 181, 182mulassd 10265 . . 3 (𝜑 → ((((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))))
184 etransclem25.t . . 3 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
185183, 184syl6eqr 2823 . 2 (𝜑 → ((((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 𝑇)
186169, 185breqtrd 4812 1 (𝜑 → (!‘𝑃) ∥ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  cdif 3720  wss 3723  ifcif 4225  {csn 4316   class class class wbr 4786  wf 6027  cfv 6031  (class class class)co 6793  𝑚 cmap 8009  Fincfn 8109  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  cn 11222  0cn0 11494  cz 11579  ...cfz 12533  cexp 13067  !cfa 13264  Σcsu 14624  cprod 14842  cdvds 15189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-prod 14843  df-dvds 15190
This theorem is referenced by:  etransclem28  40996  etransclem38  41006
  Copyright terms: Public domain W3C validator