Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem25 Structured version   Visualization version   GIF version

Theorem etransclem25 43800
Description: 𝑃 factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem25.p (𝜑𝑃 ∈ ℕ)
etransclem25.m (𝜑𝑀 ∈ ℕ0)
etransclem25.n (𝜑𝑁 ∈ ℕ0)
etransclem25.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem25.sumc (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐶𝑗) = 𝑁)
etransclem25.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem25.j (𝜑𝐽 ∈ (1...𝑀))
Assertion
Ref Expression
etransclem25 (𝜑 → (!‘𝑃) ∥ 𝑇)
Distinct variable groups:   𝐶,𝑗   𝑗,𝐽   𝑗,𝑀   𝑃,𝑗   𝜑,𝑗
Allowed substitution hints:   𝑇(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem25
StepHypRef Expression
1 etransclem25.p . . . . . . 7 (𝜑𝑃 ∈ ℕ)
21nnnn0d 12293 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
32faccld 13998 . . . . 5 (𝜑 → (!‘𝑃) ∈ ℕ)
43nnzd 12425 . . . 4 (𝜑 → (!‘𝑃) ∈ ℤ)
5 etransclem25.sumc . . . . . . . . . 10 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐶𝑗) = 𝑁)
65eqcomd 2744 . . . . . . . . 9 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐶𝑗))
76fveq2d 6778 . . . . . . . 8 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐶𝑗)))
87oveq1d 7290 . . . . . . 7 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐶𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))))
9 nfcv 2907 . . . . . . . 8 𝑗𝐶
10 fzfid 13693 . . . . . . . 8 (𝜑 → (0...𝑀) ∈ Fin)
11 etransclem25.c . . . . . . . . 9 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
12 nn0ex 12239 . . . . . . . . . . 11 0 ∈ V
13 fzssnn0 42856 . . . . . . . . . . 11 (0...𝑁) ⊆ ℕ0
14 mapss 8677 . . . . . . . . . . 11 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
1512, 13, 14mp2an 689 . . . . . . . . . 10 ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀))
16 ovex 7308 . . . . . . . . . . . 12 (0...𝑁) ∈ V
17 ovexd 7310 . . . . . . . . . . . 12 (𝐶:(0...𝑀)⟶(0...𝑁) → (0...𝑀) ∈ V)
18 elmapg 8628 . . . . . . . . . . . 12 (((0...𝑁) ∈ V ∧ (0...𝑀) ∈ V) → (𝐶 ∈ ((0...𝑁) ↑m (0...𝑀)) ↔ 𝐶:(0...𝑀)⟶(0...𝑁)))
1916, 17, 18sylancr 587 . . . . . . . . . . 11 (𝐶:(0...𝑀)⟶(0...𝑁) → (𝐶 ∈ ((0...𝑁) ↑m (0...𝑀)) ↔ 𝐶:(0...𝑀)⟶(0...𝑁)))
2019ibir 267 . . . . . . . . . 10 (𝐶:(0...𝑀)⟶(0...𝑁) → 𝐶 ∈ ((0...𝑁) ↑m (0...𝑀)))
2115, 20sselid 3919 . . . . . . . . 9 (𝐶:(0...𝑀)⟶(0...𝑁) → 𝐶 ∈ (ℕ0m (0...𝑀)))
2211, 21syl 17 . . . . . . . 8 (𝜑𝐶 ∈ (ℕ0m (0...𝑀)))
239, 10, 22mccl 43139 . . . . . . 7 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐶𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℕ)
248, 23eqeltrd 2839 . . . . . 6 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℕ)
2524nnzd 12425 . . . . 5 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℤ)
26 etransclem25.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
27 etransclem25.j . . . . . . 7 (𝜑𝐽 ∈ (1...𝑀))
2827elfzelzd 13257 . . . . . 6 (𝜑𝐽 ∈ ℤ)
291, 26, 11, 28etransclem10 43785 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)
3025, 29zmulcld 12432 . . . 4 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) ∈ ℤ)
31 fzfid 13693 . . . . 5 (𝜑 → (1...𝑀) ∈ Fin)
321adantr 481 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
3311adantr 481 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐶:(0...𝑀)⟶(0...𝑁))
34 0z 12330 . . . . . . . . 9 0 ∈ ℤ
35 fzp1ss 13307 . . . . . . . . 9 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
3634, 35ax-mp 5 . . . . . . . 8 ((0 + 1)...𝑀) ⊆ (0...𝑀)
37 id 22 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (1...𝑀))
38 1e0p1 12479 . . . . . . . . . 10 1 = (0 + 1)
3938oveq1i 7285 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
4037, 39eleqtrdi 2849 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
4136, 40sselid 3919 . . . . . . 7 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
4241adantl 482 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
4328adantr 481 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
4432, 33, 42, 43etransclem3 43778 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
4531, 44fprodzcl 15664 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
464, 30, 453jca 1127 . . 3 (𝜑 → ((!‘𝑃) ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ))
4728zcnd 12427 . . . . . . . . . . 11 (𝜑𝐽 ∈ ℂ)
4847subidd 11320 . . . . . . . . . 10 (𝜑 → (𝐽𝐽) = 0)
4948eqcomd 2744 . . . . . . . . 9 (𝜑 → 0 = (𝐽𝐽))
5049oveq1d 7290 . . . . . . . 8 (𝜑 → (0↑(𝑃 − (𝐶𝐽))) = ((𝐽𝐽)↑(𝑃 − (𝐶𝐽))))
5150oveq2d 7291 . . . . . . 7 (𝜑 → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐽𝐽)↑(𝑃 − (𝐶𝐽)))))
5251ifeq2d 4479 . . . . . 6 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐽𝐽)↑(𝑃 − (𝐶𝐽))))))
53 id 22 . . . . . . . . . 10 (𝐽 ∈ (1...𝑀) → 𝐽 ∈ (1...𝑀))
5453, 39eleqtrdi 2849 . . . . . . . . 9 (𝐽 ∈ (1...𝑀) → 𝐽 ∈ ((0 + 1)...𝑀))
5536, 54sselid 3919 . . . . . . . 8 (𝐽 ∈ (1...𝑀) → 𝐽 ∈ (0...𝑀))
5627, 55syl 17 . . . . . . 7 (𝜑𝐽 ∈ (0...𝑀))
571, 11, 56, 28etransclem3 43778 . . . . . 6 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐽𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)
5852, 57eqeltrd 2839 . . . . 5 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)
59 fzfi 13692 . . . . . . 7 (1...𝑀) ∈ Fin
60 diffi 8962 . . . . . . 7 ((1...𝑀) ∈ Fin → ((1...𝑀) ∖ {𝐽}) ∈ Fin)
6159, 60mp1i 13 . . . . . 6 (𝜑 → ((1...𝑀) ∖ {𝐽}) ∈ Fin)
621adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ ((1...𝑀) ∖ {𝐽})) → 𝑃 ∈ ℕ)
6311adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ ((1...𝑀) ∖ {𝐽})) → 𝐶:(0...𝑀)⟶(0...𝑁))
64 eldifi 4061 . . . . . . . . 9 (𝑗 ∈ ((1...𝑀) ∖ {𝐽}) → 𝑗 ∈ (1...𝑀))
6564, 41syl 17 . . . . . . . 8 (𝑗 ∈ ((1...𝑀) ∖ {𝐽}) → 𝑗 ∈ (0...𝑀))
6665adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ ((1...𝑀) ∖ {𝐽})) → 𝑗 ∈ (0...𝑀))
6728adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ ((1...𝑀) ∖ {𝐽})) → 𝐽 ∈ ℤ)
6862, 63, 66, 67etransclem3 43778 . . . . . 6 ((𝜑𝑗 ∈ ((1...𝑀) ∖ {𝐽})) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
6961, 68fprodzcl 15664 . . . . 5 (𝜑 → ∏𝑗 ∈ ((1...𝑀) ∖ {𝐽})if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
70 dvds0 15981 . . . . . . . . 9 ((!‘𝑃) ∈ ℤ → (!‘𝑃) ∥ 0)
714, 70syl 17 . . . . . . . 8 (𝜑 → (!‘𝑃) ∥ 0)
7271adantr 481 . . . . . . 7 ((𝜑𝑃 < (𝐶𝐽)) → (!‘𝑃) ∥ 0)
73 iftrue 4465 . . . . . . . . 9 (𝑃 < (𝐶𝐽) → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) = 0)
7473eqcomd 2744 . . . . . . . 8 (𝑃 < (𝐶𝐽) → 0 = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
7574adantl 482 . . . . . . 7 ((𝜑𝑃 < (𝐶𝐽)) → 0 = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
7672, 75breqtrd 5100 . . . . . 6 ((𝜑𝑃 < (𝐶𝐽)) → (!‘𝑃) ∥ if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
77 iddvds 15979 . . . . . . . . . 10 ((!‘𝑃) ∈ ℤ → (!‘𝑃) ∥ (!‘𝑃))
784, 77syl 17 . . . . . . . . 9 (𝜑 → (!‘𝑃) ∥ (!‘𝑃))
7978ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ 𝑃 = (𝐶𝐽)) → (!‘𝑃) ∥ (!‘𝑃))
80 iffalse 4468 . . . . . . . . . 10 𝑃 < (𝐶𝐽) → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))))
8180ad2antlr 724 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ 𝑃 = (𝐶𝐽)) → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))))
82 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑃 = (𝐶𝐽) → (𝑃 − (𝐶𝐽)) = ((𝐶𝐽) − (𝐶𝐽)))
8382adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑃 = (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) = ((𝐶𝐽) − (𝐶𝐽)))
8411, 56ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶𝐽) ∈ (0...𝑁))
8584elfzelzd 13257 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐶𝐽) ∈ ℤ)
8685zcnd 12427 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐶𝐽) ∈ ℂ)
8786adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑃 = (𝐶𝐽)) → (𝐶𝐽) ∈ ℂ)
8887subidd 11320 . . . . . . . . . . . . . . . . 17 ((𝜑𝑃 = (𝐶𝐽)) → ((𝐶𝐽) − (𝐶𝐽)) = 0)
8983, 88eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑃 = (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) = 0)
9089fveq2d 6778 . . . . . . . . . . . . . . 15 ((𝜑𝑃 = (𝐶𝐽)) → (!‘(𝑃 − (𝐶𝐽))) = (!‘0))
91 fac0 13990 . . . . . . . . . . . . . . 15 (!‘0) = 1
9290, 91eqtrdi 2794 . . . . . . . . . . . . . 14 ((𝜑𝑃 = (𝐶𝐽)) → (!‘(𝑃 − (𝐶𝐽))) = 1)
9392oveq2d 7291 . . . . . . . . . . . . 13 ((𝜑𝑃 = (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) = ((!‘𝑃) / 1))
943nncnd 11989 . . . . . . . . . . . . . . 15 (𝜑 → (!‘𝑃) ∈ ℂ)
9594div1d 11743 . . . . . . . . . . . . . 14 (𝜑 → ((!‘𝑃) / 1) = (!‘𝑃))
9695adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑃 = (𝐶𝐽)) → ((!‘𝑃) / 1) = (!‘𝑃))
9793, 96eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑃 = (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) = (!‘𝑃))
9889oveq2d 7291 . . . . . . . . . . . . 13 ((𝜑𝑃 = (𝐶𝐽)) → (0↑(𝑃 − (𝐶𝐽))) = (0↑0))
99 0cnd 10968 . . . . . . . . . . . . . 14 ((𝜑𝑃 = (𝐶𝐽)) → 0 ∈ ℂ)
10099exp0d 13858 . . . . . . . . . . . . 13 ((𝜑𝑃 = (𝐶𝐽)) → (0↑0) = 1)
10198, 100eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑃 = (𝐶𝐽)) → (0↑(𝑃 − (𝐶𝐽))) = 1)
10297, 101oveq12d 7293 . . . . . . . . . . 11 ((𝜑𝑃 = (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = ((!‘𝑃) · 1))
10394mulid1d 10992 . . . . . . . . . . . 12 (𝜑 → ((!‘𝑃) · 1) = (!‘𝑃))
104103adantr 481 . . . . . . . . . . 11 ((𝜑𝑃 = (𝐶𝐽)) → ((!‘𝑃) · 1) = (!‘𝑃))
105102, 104eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑃 = (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = (!‘𝑃))
106105adantlr 712 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ 𝑃 = (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = (!‘𝑃))
10781, 106eqtr2d 2779 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ 𝑃 = (𝐶𝐽)) → (!‘𝑃) = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
10879, 107breqtrd 5100 . . . . . . 7 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ 𝑃 = (𝐶𝐽)) → (!‘𝑃) ∥ if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
10971ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (!‘𝑃) ∥ 0)
110 simpr 485 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ¬ 𝑃 < (𝐶𝐽))
111110adantr 481 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → ¬ 𝑃 < (𝐶𝐽))
112111iffalsed 4470 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))))
113 simpll 764 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → 𝜑)
11485zred 12426 . . . . . . . . . . . 12 (𝜑 → (𝐶𝐽) ∈ ℝ)
115114ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (𝐶𝐽) ∈ ℝ)
1161nnred 11988 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
117116ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → 𝑃 ∈ ℝ)
118114adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ∈ ℝ)
119116adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℝ)
120118, 119, 110nltled 11125 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ≤ 𝑃)
121120adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (𝐶𝐽) ≤ 𝑃)
122 neqne 2951 . . . . . . . . . . . 12 𝑃 = (𝐶𝐽) → 𝑃 ≠ (𝐶𝐽))
123122adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → 𝑃 ≠ (𝐶𝐽))
124115, 117, 121, 123leneltd 11129 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (𝐶𝐽) < 𝑃)
1251nnzd 12425 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
126125adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → 𝑃 ∈ ℤ)
12785adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝐶𝐽) ∈ ℤ)
128126, 127zsubcld 12431 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝑃 − (𝐶𝐽)) ∈ ℤ)
129 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝐶𝐽) < 𝑃)
130114adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝐶𝐽) ∈ ℝ)
131116adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → 𝑃 ∈ ℝ)
132130, 131posdifd 11562 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → ((𝐶𝐽) < 𝑃 ↔ 0 < (𝑃 − (𝐶𝐽))))
133129, 132mpbid 231 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → 0 < (𝑃 − (𝐶𝐽)))
134 elnnz 12329 . . . . . . . . . . . . . 14 ((𝑃 − (𝐶𝐽)) ∈ ℕ ↔ ((𝑃 − (𝐶𝐽)) ∈ ℤ ∧ 0 < (𝑃 − (𝐶𝐽))))
135128, 133, 134sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝑃 − (𝐶𝐽)) ∈ ℕ)
1361350expd 13857 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (0↑(𝑃 − (𝐶𝐽))) = 0)
137136oveq2d 7291 . . . . . . . . . . 11 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · 0))
13894adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (!‘𝑃) ∈ ℂ)
139135nnnn0d 12293 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (𝑃 − (𝐶𝐽)) ∈ ℕ0)
140139faccld 13998 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (!‘(𝑃 − (𝐶𝐽))) ∈ ℕ)
141140nncnd 11989 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (!‘(𝑃 − (𝐶𝐽))) ∈ ℂ)
142140nnne0d 12023 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (!‘(𝑃 − (𝐶𝐽))) ≠ 0)
143138, 141, 142divcld 11751 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℂ)
144143mul01d 11174 . . . . . . . . . . 11 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · 0) = 0)
145137, 144eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝐶𝐽) < 𝑃) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = 0)
146113, 124, 145syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))) = 0)
147112, 146eqtr2d 2779 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → 0 = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
148109, 147breqtrd 5100 . . . . . . 7 (((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) ∧ ¬ 𝑃 = (𝐶𝐽)) → (!‘𝑃) ∥ if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
149108, 148pm2.61dan 810 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (!‘𝑃) ∥ if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
15076, 149pm2.61dan 810 . . . . 5 (𝜑 → (!‘𝑃) ∥ if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
1514, 58, 69, 150dvdsmultr1d 16006 . . . 4 (𝜑 → (!‘𝑃) ∥ (if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) · ∏𝑗 ∈ ((1...𝑀) ∖ {𝐽})if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
15244zcnd 12427 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℂ)
153 fveq2 6774 . . . . . . . 8 (𝑗 = 𝐽 → (𝐶𝑗) = (𝐶𝐽))
154153breq2d 5086 . . . . . . 7 (𝑗 = 𝐽 → (𝑃 < (𝐶𝑗) ↔ 𝑃 < (𝐶𝐽)))
155154adantl 482 . . . . . 6 ((𝜑𝑗 = 𝐽) → (𝑃 < (𝐶𝑗) ↔ 𝑃 < (𝐶𝐽)))
156153oveq2d 7291 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑃 − (𝐶𝑗)) = (𝑃 − (𝐶𝐽)))
157156fveq2d 6778 . . . . . . . . 9 (𝑗 = 𝐽 → (!‘(𝑃 − (𝐶𝑗))) = (!‘(𝑃 − (𝐶𝐽))))
158157oveq2d 7291 . . . . . . . 8 (𝑗 = 𝐽 → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))))
159158adantl 482 . . . . . . 7 ((𝜑𝑗 = 𝐽) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))))
160 oveq2 7283 . . . . . . . . 9 (𝑗 = 𝐽 → (𝐽𝑗) = (𝐽𝐽))
161160, 48sylan9eqr 2800 . . . . . . . 8 ((𝜑𝑗 = 𝐽) → (𝐽𝑗) = 0)
162156adantl 482 . . . . . . . 8 ((𝜑𝑗 = 𝐽) → (𝑃 − (𝐶𝑗)) = (𝑃 − (𝐶𝐽)))
163161, 162oveq12d 7293 . . . . . . 7 ((𝜑𝑗 = 𝐽) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) = (0↑(𝑃 − (𝐶𝐽))))
164159, 163oveq12d 7293 . . . . . 6 ((𝜑𝑗 = 𝐽) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽)))))
165155, 164ifbieq2d 4485 . . . . 5 ((𝜑𝑗 = 𝐽) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))))
16631, 152, 27, 165fprodsplit1 43134 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = (if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · (0↑(𝑃 − (𝐶𝐽))))) · ∏𝑗 ∈ ((1...𝑀) ∖ {𝐽})if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
167151, 166breqtrrd 5102 . . 3 (𝜑 → (!‘𝑃) ∥ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))
168 dvdsmultr2 16007 . . 3 (((!‘𝑃) ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ) → ((!‘𝑃) ∥ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) → (!‘𝑃) ∥ ((((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))))
16946, 167, 168sylc 65 . 2 (𝜑 → (!‘𝑃) ∥ ((((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
170 etransclem25.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
171170faccld 13998 . . . . . 6 (𝜑 → (!‘𝑁) ∈ ℕ)
172171nncnd 11989 . . . . 5 (𝜑 → (!‘𝑁) ∈ ℂ)
17311ffvelrnda 6961 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
17413, 173sselid 3919 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ ℕ0)
175174faccld 13998 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℕ)
176175nncnd 11989 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℂ)
17710, 176fprodcl 15662 . . . . 5 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ∈ ℂ)
178175nnne0d 12023 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ≠ 0)
17910, 176, 178fprodn0 15689 . . . . 5 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ≠ 0)
180172, 177, 179divcld 11751 . . . 4 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℂ)
18129zcnd 12427 . . . 4 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℂ)
18231, 152fprodcl 15662 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℂ)
183180, 181, 182mulassd 10998 . . 3 (𝜑 → ((((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))))
184 etransclem25.t . . 3 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
185183, 184eqtr4di 2796 . 2 (𝜑 → ((((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 𝑇)
186169, 185breqtrd 5100 1 (𝜑 → (!‘𝑃) ∥ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  wss 3887  ifcif 4459  {csn 4561   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  cexp 13782  !cfa 13987  Σcsu 15397  cprod 15615  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-prod 15616  df-dvds 15964
This theorem is referenced by:  etransclem28  43803  etransclem38  43813
  Copyright terms: Public domain W3C validator