Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzspl Structured version   Visualization version   GIF version

Theorem fzspl 32542
Description: Split the last element of a finite set of sequential integers. More generic than fzsuc 13572. (Contributed by Thierry Arnoux, 7-Nov-2016.)
Assertion
Ref Expression
fzspl (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))

Proof of Theorem fzspl
StepHypRef Expression
1 eluzelz 12854 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
21zcnd 12689 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
3 1zzd 12615 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 1 ∈ ℤ)
43zcnd 12689 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 1 ∈ ℂ)
52, 4npcand 11597 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑁 − 1) + 1) = 𝑁)
65eleq1d 2813 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑁 − 1) + 1) ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑀)))
76ibir 268 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ𝑀))
8 eluzelre 12855 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
98lem1d 12169 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ≤ 𝑁)
101, 3zsubcld 12693 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ∈ ℤ)
11 eluz1 12848 . . . . 5 ((𝑁 − 1) ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁)))
1210, 11syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁)))
131, 9, 12mpbir2and 712 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
14 fzsplit2 13550 . . 3 ((((𝑁 − 1) + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
157, 13, 14syl2anc 583 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
165oveq1d 7429 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
17 fzsn 13567 . . . . 5 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
181, 17syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁...𝑁) = {𝑁})
1916, 18eqtrd 2767 . . 3 (𝑁 ∈ (ℤ𝑀) → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
2019uneq2d 4159 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
2115, 20eqtrd 2767 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  cun 3942  {csn 4624   class class class wbr 5142  cfv 6542  (class class class)co 7414  1c1 11131   + caddc 11133  cle 11271  cmin 11466  cz 12580  cuz 12844  ...cfz 13508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509
This theorem is referenced by:  fzdif2  32543  ballotlemfp1  34047
  Copyright terms: Public domain W3C validator