![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzspl | Structured version Visualization version GIF version |
Description: Split the last element of a finite set of sequential integers. More generic than fzsuc 13572. (Contributed by Thierry Arnoux, 7-Nov-2016.) |
Ref | Expression |
---|---|
fzspl | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12854 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
2 | 1 | zcnd 12689 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
3 | 1zzd 12615 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℤ) | |
4 | 3 | zcnd 12689 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℂ) |
5 | 2, 4 | npcand 11597 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) + 1) = 𝑁) |
6 | 5 | eleq1d 2813 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1) ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
7 | 6 | ibir 268 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ≥‘𝑀)) |
8 | eluzelre 12855 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
9 | 8 | lem1d 12169 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ≤ 𝑁) |
10 | 1, 3 | zsubcld 12693 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) |
11 | eluz1 12848 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℤ → (𝑁 ∈ (ℤ≥‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁))) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ (ℤ≥‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁))) |
13 | 1, 9, 12 | mpbir2and 712 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
14 | fzsplit2 13550 | . . 3 ⊢ ((((𝑁 − 1) + 1) ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) | |
15 | 7, 13, 14 | syl2anc 583 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
16 | 5 | oveq1d 7429 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
17 | fzsn 13567 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) | |
18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁...𝑁) = {𝑁}) |
19 | 16, 18 | eqtrd 2767 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
20 | 19 | uneq2d 4159 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
21 | 15, 20 | eqtrd 2767 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∪ cun 3942 {csn 4624 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 1c1 11131 + caddc 11133 ≤ cle 11271 − cmin 11466 ℤcz 12580 ℤ≥cuz 12844 ...cfz 13508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 |
This theorem is referenced by: fzdif2 32543 ballotlemfp1 34047 |
Copyright terms: Public domain | W3C validator |