![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzspl | Structured version Visualization version GIF version |
Description: Split the last element of a finite set of sequential integers. More generic than fzsuc 13547. (Contributed by Thierry Arnoux, 7-Nov-2016.) |
Ref | Expression |
---|---|
fzspl | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12831 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
2 | 1 | zcnd 12666 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
3 | 1zzd 12592 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℤ) | |
4 | 3 | zcnd 12666 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℂ) |
5 | 2, 4 | npcand 11574 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) + 1) = 𝑁) |
6 | 5 | eleq1d 2818 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1) ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
7 | 6 | ibir 267 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ≥‘𝑀)) |
8 | eluzelre 12832 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
9 | 8 | lem1d 12146 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ≤ 𝑁) |
10 | 1, 3 | zsubcld 12670 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) |
11 | eluz1 12825 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℤ → (𝑁 ∈ (ℤ≥‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁))) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ (ℤ≥‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁))) |
13 | 1, 9, 12 | mpbir2and 711 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
14 | fzsplit2 13525 | . . 3 ⊢ ((((𝑁 − 1) + 1) ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) | |
15 | 7, 13, 14 | syl2anc 584 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
16 | 5 | oveq1d 7423 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
17 | fzsn 13542 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) | |
18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁...𝑁) = {𝑁}) |
19 | 16, 18 | eqtrd 2772 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
20 | 19 | uneq2d 4163 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
21 | 15, 20 | eqtrd 2772 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∪ cun 3946 {csn 4628 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 1c1 11110 + caddc 11112 ≤ cle 11248 − cmin 11443 ℤcz 12557 ℤ≥cuz 12821 ...cfz 13483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 |
This theorem is referenced by: fzdif2 31997 ballotlemfp1 33485 |
Copyright terms: Public domain | W3C validator |