|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fzspl | Structured version Visualization version GIF version | ||
| Description: Split the last element of a finite set of sequential integers. More generic than fzsuc 13612. (Contributed by Thierry Arnoux, 7-Nov-2016.) | 
| Ref | Expression | 
|---|---|
| fzspl | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluzelz 12889 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 2 | 1 | zcnd 12725 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | 
| 3 | 1zzd 12650 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℤ) | |
| 4 | 3 | zcnd 12725 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℂ) | 
| 5 | 2, 4 | npcand 11625 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) + 1) = 𝑁) | 
| 6 | 5 | eleq1d 2825 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1) ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) | 
| 7 | 6 | ibir 268 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ≥‘𝑀)) | 
| 8 | eluzelre 12890 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
| 9 | 8 | lem1d 12202 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ≤ 𝑁) | 
| 10 | 1, 3 | zsubcld 12729 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) | 
| 11 | eluz1 12883 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℤ → (𝑁 ∈ (ℤ≥‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁))) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ (ℤ≥‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁))) | 
| 13 | 1, 9, 12 | mpbir2and 713 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) | 
| 14 | fzsplit2 13590 | . . 3 ⊢ ((((𝑁 − 1) + 1) ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) | |
| 15 | 7, 13, 14 | syl2anc 584 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) | 
| 16 | 5 | oveq1d 7447 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) | 
| 17 | fzsn 13607 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) | |
| 18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁...𝑁) = {𝑁}) | 
| 19 | 16, 18 | eqtrd 2776 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) | 
| 20 | 19 | uneq2d 4167 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) | 
| 21 | 15, 20 | eqtrd 2776 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 {csn 4625 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 1c1 11157 + caddc 11159 ≤ cle 11297 − cmin 11493 ℤcz 12615 ℤ≥cuz 12879 ...cfz 13548 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 | 
| This theorem is referenced by: fzdif2 32793 ballotlemfp1 34495 | 
| Copyright terms: Public domain | W3C validator |