![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0tsmsbi | Structured version Visualization version GIF version |
Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 23-Jun-2017.) |
Ref | Expression |
---|---|
xrge0tsmseq.g | ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) |
xrge0tsmseq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
xrge0tsmseq.f | ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) |
Ref | Expression |
---|---|
xrge0tsmsbi | ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0tsmseq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | xrge0tsmseq.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) | |
3 | xrge0tsmseq.g | . . . . . 6 ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) | |
4 | 3 | xrge0tsms2 24882 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o) |
5 | 1, 2, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) ≈ 1o) |
6 | en1b 9073 | . . . 4 ⊢ ((𝐺 tsums 𝐹) ≈ 1o ↔ (𝐺 tsums 𝐹) = {∪ (𝐺 tsums 𝐹)}) | |
7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐺 tsums 𝐹) = {∪ (𝐺 tsums 𝐹)}) |
8 | 7 | eleq2d 2827 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ {∪ (𝐺 tsums 𝐹)})) |
9 | ovex 7471 | . . . . . . 7 ⊢ (𝐺 tsums 𝐹) ∈ V | |
10 | 9 | uniex 7767 | . . . . . 6 ⊢ ∪ (𝐺 tsums 𝐹) ∈ V |
11 | eleq1 2829 | . . . . . 6 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → (𝐶 ∈ V ↔ ∪ (𝐺 tsums 𝐹) ∈ V)) | |
12 | 10, 11 | mpbiri 258 | . . . . 5 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → 𝐶 ∈ V) |
13 | elsng 4648 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
15 | 14 | ibir 268 | . . 3 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → 𝐶 ∈ {∪ (𝐺 tsums 𝐹)}) |
16 | elsni 4651 | . . 3 ⊢ (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} → 𝐶 = ∪ (𝐺 tsums 𝐹)) | |
17 | 15, 16 | impbii 209 | . 2 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ {∪ (𝐺 tsums 𝐹)}) |
18 | 8, 17 | bitr4di 289 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2108 Vcvv 3481 {csn 4634 ∪ cuni 4915 class class class wbr 5151 ⟶wf 6565 (class class class)co 7438 1oc1o 8507 ≈ cen 8990 0cc0 11162 +∞cpnf 11299 [,]cicc 13396 ↾s cress 17283 ℝ*𝑠cxrs 17556 tsums ctsu 24159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-fi 9458 df-sup 9489 df-inf 9490 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-q 12998 df-xadd 13162 df-ioo 13397 df-ioc 13398 df-ico 13399 df-icc 13400 df-fz 13554 df-fzo 13701 df-seq 14049 df-hash 14376 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-tset 17326 df-ple 17327 df-ds 17329 df-rest 17478 df-topn 17479 df-0g 17497 df-gsum 17498 df-topgen 17499 df-ordt 17557 df-xrs 17558 df-mre 17640 df-mrc 17641 df-acs 17643 df-ps 18633 df-tsr 18634 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-cntz 19357 df-cmn 19824 df-fbas 21388 df-fg 21389 df-top 22925 df-topon 22942 df-topsp 22964 df-bases 22978 df-ntr 23053 df-nei 23131 df-cn 23260 df-haus 23348 df-fil 23879 df-fm 23971 df-flim 23972 df-flf 23973 df-tsms 24160 |
This theorem is referenced by: esumcl 34025 |
Copyright terms: Public domain | W3C validator |