| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0tsmsbi | Structured version Visualization version GIF version | ||
| Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 23-Jun-2017.) |
| Ref | Expression |
|---|---|
| xrge0tsmseq.g | ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) |
| xrge0tsmseq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| xrge0tsmseq.f | ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) |
| Ref | Expression |
|---|---|
| xrge0tsmsbi | ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0tsmseq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | xrge0tsmseq.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) | |
| 3 | xrge0tsmseq.g | . . . . . 6 ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) | |
| 4 | 3 | xrge0tsms2 24752 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o) |
| 5 | 1, 2, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) ≈ 1o) |
| 6 | en1b 8954 | . . . 4 ⊢ ((𝐺 tsums 𝐹) ≈ 1o ↔ (𝐺 tsums 𝐹) = {∪ (𝐺 tsums 𝐹)}) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐺 tsums 𝐹) = {∪ (𝐺 tsums 𝐹)}) |
| 8 | 7 | eleq2d 2819 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ {∪ (𝐺 tsums 𝐹)})) |
| 9 | ovex 7385 | . . . . . . 7 ⊢ (𝐺 tsums 𝐹) ∈ V | |
| 10 | 9 | uniex 7680 | . . . . . 6 ⊢ ∪ (𝐺 tsums 𝐹) ∈ V |
| 11 | eleq1 2821 | . . . . . 6 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → (𝐶 ∈ V ↔ ∪ (𝐺 tsums 𝐹) ∈ V)) | |
| 12 | 10, 11 | mpbiri 258 | . . . . 5 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → 𝐶 ∈ V) |
| 13 | elsng 4589 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
| 15 | 14 | ibir 268 | . . 3 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → 𝐶 ∈ {∪ (𝐺 tsums 𝐹)}) |
| 16 | elsni 4592 | . . 3 ⊢ (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} → 𝐶 = ∪ (𝐺 tsums 𝐹)) | |
| 17 | 15, 16 | impbii 209 | . 2 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ {∪ (𝐺 tsums 𝐹)}) |
| 18 | 8, 17 | bitr4di 289 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 ∪ cuni 4858 class class class wbr 5093 ⟶wf 6482 (class class class)co 7352 1oc1o 8384 ≈ cen 8872 0cc0 11013 +∞cpnf 11150 [,]cicc 13250 ↾s cress 17143 ℝ*𝑠cxrs 17406 tsums ctsu 24042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-xadd 13014 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-tset 17182 df-ple 17183 df-ds 17185 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-ordt 17407 df-xrs 17408 df-mre 17490 df-mrc 17491 df-acs 17493 df-ps 18474 df-tsr 18475 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-cntz 19231 df-cmn 19696 df-fbas 21290 df-fg 21291 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-ntr 22936 df-nei 23014 df-cn 23143 df-haus 23231 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-tsms 24043 |
| This theorem is referenced by: esumcl 34064 |
| Copyright terms: Public domain | W3C validator |