| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0tsmsbi | Structured version Visualization version GIF version | ||
| Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 23-Jun-2017.) |
| Ref | Expression |
|---|---|
| xrge0tsmseq.g | ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) |
| xrge0tsmseq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| xrge0tsmseq.f | ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) |
| Ref | Expression |
|---|---|
| xrge0tsmsbi | ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0tsmseq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | xrge0tsmseq.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) | |
| 3 | xrge0tsmseq.g | . . . . . 6 ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) | |
| 4 | 3 | xrge0tsms2 24730 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o) |
| 5 | 1, 2, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) ≈ 1o) |
| 6 | en1b 8998 | . . . 4 ⊢ ((𝐺 tsums 𝐹) ≈ 1o ↔ (𝐺 tsums 𝐹) = {∪ (𝐺 tsums 𝐹)}) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐺 tsums 𝐹) = {∪ (𝐺 tsums 𝐹)}) |
| 8 | 7 | eleq2d 2815 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ {∪ (𝐺 tsums 𝐹)})) |
| 9 | ovex 7422 | . . . . . . 7 ⊢ (𝐺 tsums 𝐹) ∈ V | |
| 10 | 9 | uniex 7719 | . . . . . 6 ⊢ ∪ (𝐺 tsums 𝐹) ∈ V |
| 11 | eleq1 2817 | . . . . . 6 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → (𝐶 ∈ V ↔ ∪ (𝐺 tsums 𝐹) ∈ V)) | |
| 12 | 10, 11 | mpbiri 258 | . . . . 5 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → 𝐶 ∈ V) |
| 13 | elsng 4605 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
| 15 | 14 | ibir 268 | . . 3 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → 𝐶 ∈ {∪ (𝐺 tsums 𝐹)}) |
| 16 | elsni 4608 | . . 3 ⊢ (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} → 𝐶 = ∪ (𝐺 tsums 𝐹)) | |
| 17 | 15, 16 | impbii 209 | . 2 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ {∪ (𝐺 tsums 𝐹)}) |
| 18 | 8, 17 | bitr4di 289 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4591 ∪ cuni 4873 class class class wbr 5109 ⟶wf 6509 (class class class)co 7389 1oc1o 8429 ≈ cen 8917 0cc0 11074 +∞cpnf 11211 [,]cicc 13315 ↾s cress 17206 ℝ*𝑠cxrs 17469 tsums ctsu 24019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-xadd 13079 df-ioo 13316 df-ioc 13317 df-ico 13318 df-icc 13319 df-fz 13475 df-fzo 13622 df-seq 13973 df-hash 14302 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-tset 17245 df-ple 17246 df-ds 17248 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-ordt 17470 df-xrs 17471 df-mre 17553 df-mrc 17554 df-acs 17556 df-ps 18531 df-tsr 18532 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-cntz 19255 df-cmn 19718 df-fbas 21267 df-fg 21268 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-ntr 22913 df-nei 22991 df-cn 23120 df-haus 23208 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-tsms 24020 |
| This theorem is referenced by: esumcl 34026 |
| Copyright terms: Public domain | W3C validator |