MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacl Structured version   Visualization version   GIF version

Theorem oacl 8535
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oacl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)

Proof of Theorem oacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7417 . . . 4 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
21eleq1d 2819 . . 3 (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o ∅) ∈ On))
3 oveq2 7417 . . . 4 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
43eleq1d 2819 . . 3 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝑦) ∈ On))
5 oveq2 7417 . . . 4 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
65eleq1d 2819 . . 3 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o suc 𝑦) ∈ On))
7 oveq2 7417 . . . 4 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
87eleq1d 2819 . . 3 (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝐵) ∈ On))
9 oa0 8516 . . . . 5 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
109eleq1d 2819 . . . 4 (𝐴 ∈ On → ((𝐴 +o ∅) ∈ On ↔ 𝐴 ∈ On))
1110ibir 268 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) ∈ On)
12 onsuc 7799 . . . . 5 ((𝐴 +o 𝑦) ∈ On → suc (𝐴 +o 𝑦) ∈ On)
13 oasuc 8524 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
1413eleq1d 2819 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ∈ On ↔ suc (𝐴 +o 𝑦) ∈ On))
1512, 14imbitrrid 245 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On))
1615expcom 415 . . 3 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On)))
17 vex 3479 . . . . . 6 𝑥 ∈ V
18 iunon 8339 . . . . . 6 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On) → 𝑦𝑥 (𝐴 +o 𝑦) ∈ On)
1917, 18mpan 689 . . . . 5 (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → 𝑦𝑥 (𝐴 +o 𝑦) ∈ On)
20 oalim 8532 . . . . . . 7 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
2117, 20mpanr1 702 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
2221eleq1d 2819 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝑥) ∈ On ↔ 𝑦𝑥 (𝐴 +o 𝑦) ∈ On))
2319, 22imbitrrid 245 . . . 4 ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On))
2423expcom 415 . . 3 (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On)))
252, 4, 6, 8, 11, 16, 24tfinds3 7854 . 2 (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 +o 𝐵) ∈ On))
2625impcom 409 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  c0 4323   ciun 4998  Oncon0 6365  Lim wlim 6366  suc csuc 6367  (class class class)co 7409   +o coa 8463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-oadd 8470
This theorem is referenced by:  omcl  8536  oaord  8547  oacan  8548  oaword  8549  oawordri  8550  oawordeulem  8554  oalimcl  8560  oaass  8561  oaf1o  8563  odi  8579  omopth2  8584  oeoalem  8596  oeoa  8597  oancom  9646  cantnfvalf  9660  dfac12lem2  10139  djunum  10190  wunex3  10736  rdgeqoa  36251  oaomoecl  42028  oawordex2  42076  omabs2  42082  tfsconcatlem  42086  tfsconcatun  42087  tfsconcatfv2  42090  tfsconcatfv  42091  tfsconcatrn  42092  tfsconcatb0  42094  tfsconcatrev  42098  ofoafg  42104  oaun3lem1  42124  oaun3lem2  42125  oaun3lem3  42126  oaun3lem4  42127  oadif1  42130  oaun2  42131  oaun3  42132  naddgeoa  42145  naddwordnexlem3  42150  oawordex3  42151  naddwordnexlem4  42152  oa1cl  42198
  Copyright terms: Public domain W3C validator