![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oacl | Structured version Visualization version GIF version |
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) |
Ref | Expression |
---|---|
oacl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6930 | . . . 4 ⊢ (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅)) | |
2 | 1 | eleq1d 2844 | . . 3 ⊢ (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o ∅) ∈ On)) |
3 | oveq2 6930 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | |
4 | 3 | eleq1d 2844 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝑦) ∈ On)) |
5 | oveq2 6930 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦)) | |
6 | 5 | eleq1d 2844 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o suc 𝑦) ∈ On)) |
7 | oveq2 6930 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵)) | |
8 | 7 | eleq1d 2844 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝐵) ∈ On)) |
9 | oa0 7880 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
10 | 9 | eleq1d 2844 | . . . 4 ⊢ (𝐴 ∈ On → ((𝐴 +o ∅) ∈ On ↔ 𝐴 ∈ On)) |
11 | 10 | ibir 260 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) ∈ On) |
12 | suceloni 7291 | . . . . 5 ⊢ ((𝐴 +o 𝑦) ∈ On → suc (𝐴 +o 𝑦) ∈ On) | |
13 | oasuc 7888 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) | |
14 | 13 | eleq1d 2844 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ∈ On ↔ suc (𝐴 +o 𝑦) ∈ On)) |
15 | 12, 14 | syl5ibr 238 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On)) |
16 | 15 | expcom 404 | . . 3 ⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On))) |
17 | vex 3401 | . . . . . 6 ⊢ 𝑥 ∈ V | |
18 | iunon 7719 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) | |
19 | 17, 18 | mpan 680 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) |
20 | oalim 7896 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦)) | |
21 | 17, 20 | mpanr1 693 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦)) |
22 | 21 | eleq1d 2844 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On)) |
23 | 19, 22 | syl5ibr 238 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On)) |
24 | 23 | expcom 404 | . . 3 ⊢ (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On))) |
25 | 2, 4, 6, 8, 11, 16, 24 | tfinds3 7342 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 +o 𝐵) ∈ On)) |
26 | 25 | impcom 398 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 Vcvv 3398 ∅c0 4141 ∪ ciun 4753 Oncon0 5976 Lim wlim 5977 suc csuc 5978 (class class class)co 6922 +o coa 7840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-oadd 7847 |
This theorem is referenced by: omcl 7900 oaord 7911 oacan 7912 oaword 7913 oawordri 7914 oawordeulem 7918 oalimcl 7924 oaass 7925 oaf1o 7927 odi 7943 omopth2 7948 oeoalem 7960 oeoa 7961 oancom 8845 cantnfvalf 8859 dfac12lem2 9301 cdanum 9356 wunex3 9898 rdgeqoa 33813 |
Copyright terms: Public domain | W3C validator |