| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oacl | Structured version Visualization version GIF version | ||
| Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.) |
| Ref | Expression |
|---|---|
| oacl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7357 | . . . 4 ⊢ (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅)) | |
| 2 | 1 | eleq1d 2813 | . . 3 ⊢ (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o ∅) ∈ On)) |
| 3 | oveq2 7357 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝑦) ∈ On)) |
| 5 | oveq2 7357 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦)) | |
| 6 | 5 | eleq1d 2813 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o suc 𝑦) ∈ On)) |
| 7 | oveq2 7357 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵)) | |
| 8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝐵) ∈ On)) |
| 9 | oa0 8434 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
| 10 | 9 | eleq1d 2813 | . . . 4 ⊢ (𝐴 ∈ On → ((𝐴 +o ∅) ∈ On ↔ 𝐴 ∈ On)) |
| 11 | 10 | ibir 268 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) ∈ On) |
| 12 | onsuc 7746 | . . . . 5 ⊢ ((𝐴 +o 𝑦) ∈ On → suc (𝐴 +o 𝑦) ∈ On) | |
| 13 | oasuc 8442 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) | |
| 14 | 13 | eleq1d 2813 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ∈ On ↔ suc (𝐴 +o 𝑦) ∈ On)) |
| 15 | 12, 14 | imbitrrid 246 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On)) |
| 16 | 15 | expcom 413 | . . 3 ⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On))) |
| 17 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 18 | iunon 8262 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) | |
| 19 | 17, 18 | mpan 690 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) |
| 20 | oalim 8450 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦)) | |
| 21 | 17, 20 | mpanr1 703 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦)) |
| 22 | 21 | eleq1d 2813 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On)) |
| 23 | 19, 22 | imbitrrid 246 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On)) |
| 24 | 23 | expcom 413 | . . 3 ⊢ (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On))) |
| 25 | 2, 4, 6, 8, 11, 16, 24 | tfinds3 7798 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 +o 𝐵) ∈ On)) |
| 26 | 25 | impcom 407 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∅c0 4284 ∪ ciun 4941 Oncon0 6307 Lim wlim 6308 suc csuc 6309 (class class class)co 7349 +o coa 8385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-oadd 8392 |
| This theorem is referenced by: omcl 8454 oaord 8465 oacan 8466 oaword 8467 oawordri 8468 oawordeulem 8472 oalimcl 8478 oaass 8479 oaf1o 8481 odi 8497 omopth2 8502 oeoalem 8514 oeoa 8515 oancom 9547 cantnfvalf 9561 dfac12lem2 10039 djunum 10090 wunex3 10635 rdgeqoa 37344 oaomoecl 43251 oawordex2 43299 omabs2 43305 tfsconcatlem 43309 tfsconcatun 43310 tfsconcatfv2 43313 tfsconcatfv 43314 tfsconcatrn 43315 tfsconcatb0 43317 tfsconcatrev 43321 ofoafg 43327 oaun3lem1 43347 oaun3lem2 43348 oaun3lem3 43349 oaun3lem4 43350 oadif1 43353 oaun2 43354 oaun3 43355 naddgeoa 43367 naddwordnexlem3 43372 oawordex3 43373 naddwordnexlem4 43374 oa1cl 43420 |
| Copyright terms: Public domain | W3C validator |