MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacl Structured version   Visualization version   GIF version

Theorem oacl 8352
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oacl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)

Proof of Theorem oacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7275 . . . 4 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
21eleq1d 2823 . . 3 (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o ∅) ∈ On))
3 oveq2 7275 . . . 4 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
43eleq1d 2823 . . 3 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝑦) ∈ On))
5 oveq2 7275 . . . 4 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
65eleq1d 2823 . . 3 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o suc 𝑦) ∈ On))
7 oveq2 7275 . . . 4 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
87eleq1d 2823 . . 3 (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝐵) ∈ On))
9 oa0 8333 . . . . 5 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
109eleq1d 2823 . . . 4 (𝐴 ∈ On → ((𝐴 +o ∅) ∈ On ↔ 𝐴 ∈ On))
1110ibir 267 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) ∈ On)
12 suceloni 7649 . . . . 5 ((𝐴 +o 𝑦) ∈ On → suc (𝐴 +o 𝑦) ∈ On)
13 oasuc 8341 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
1413eleq1d 2823 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ∈ On ↔ suc (𝐴 +o 𝑦) ∈ On))
1512, 14syl5ibr 245 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On))
1615expcom 414 . . 3 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On)))
17 vex 3433 . . . . . 6 𝑥 ∈ V
18 iunon 8157 . . . . . 6 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On) → 𝑦𝑥 (𝐴 +o 𝑦) ∈ On)
1917, 18mpan 687 . . . . 5 (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → 𝑦𝑥 (𝐴 +o 𝑦) ∈ On)
20 oalim 8349 . . . . . . 7 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
2117, 20mpanr1 700 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
2221eleq1d 2823 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝑥) ∈ On ↔ 𝑦𝑥 (𝐴 +o 𝑦) ∈ On))
2319, 22syl5ibr 245 . . . 4 ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On))
2423expcom 414 . . 3 (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On)))
252, 4, 6, 8, 11, 16, 24tfinds3 7701 . 2 (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 +o 𝐵) ∈ On))
2625impcom 408 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3429  c0 4256   ciun 4924  Oncon0 6259  Lim wlim 6260  suc csuc 6261  (class class class)co 7267   +o coa 8281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-oadd 8288
This theorem is referenced by:  omcl  8353  oaord  8365  oacan  8366  oaword  8367  oawordri  8368  oawordeulem  8372  oalimcl  8378  oaass  8379  oaf1o  8381  odi  8397  omopth2  8402  oeoalem  8414  oeoa  8415  oancom  9396  cantnfvalf  9410  dfac12lem2  9910  djunum  9961  wunex3  10507  rdgeqoa  35549
  Copyright terms: Public domain W3C validator