| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oacl | Structured version Visualization version GIF version | ||
| Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.) |
| Ref | Expression |
|---|---|
| oacl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . . 4 ⊢ (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅)) | |
| 2 | 1 | eleq1d 2813 | . . 3 ⊢ (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o ∅) ∈ On)) |
| 3 | oveq2 7395 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝑦) ∈ On)) |
| 5 | oveq2 7395 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦)) | |
| 6 | 5 | eleq1d 2813 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o suc 𝑦) ∈ On)) |
| 7 | oveq2 7395 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵)) | |
| 8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝐵) ∈ On)) |
| 9 | oa0 8480 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
| 10 | 9 | eleq1d 2813 | . . . 4 ⊢ (𝐴 ∈ On → ((𝐴 +o ∅) ∈ On ↔ 𝐴 ∈ On)) |
| 11 | 10 | ibir 268 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) ∈ On) |
| 12 | onsuc 7787 | . . . . 5 ⊢ ((𝐴 +o 𝑦) ∈ On → suc (𝐴 +o 𝑦) ∈ On) | |
| 13 | oasuc 8488 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) | |
| 14 | 13 | eleq1d 2813 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ∈ On ↔ suc (𝐴 +o 𝑦) ∈ On)) |
| 15 | 12, 14 | imbitrrid 246 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On)) |
| 16 | 15 | expcom 413 | . . 3 ⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On))) |
| 17 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 18 | iunon 8308 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) | |
| 19 | 17, 18 | mpan 690 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) |
| 20 | oalim 8496 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦)) | |
| 21 | 17, 20 | mpanr1 703 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦)) |
| 22 | 21 | eleq1d 2813 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On)) |
| 23 | 19, 22 | imbitrrid 246 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On)) |
| 24 | 23 | expcom 413 | . . 3 ⊢ (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On))) |
| 25 | 2, 4, 6, 8, 11, 16, 24 | tfinds3 7841 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 +o 𝐵) ∈ On)) |
| 26 | 25 | impcom 407 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∅c0 4296 ∪ ciun 4955 Oncon0 6332 Lim wlim 6333 suc csuc 6334 (class class class)co 7387 +o coa 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-oadd 8438 |
| This theorem is referenced by: omcl 8500 oaord 8511 oacan 8512 oaword 8513 oawordri 8514 oawordeulem 8518 oalimcl 8524 oaass 8525 oaf1o 8527 odi 8543 omopth2 8548 oeoalem 8560 oeoa 8561 oancom 9604 cantnfvalf 9618 dfac12lem2 10098 djunum 10149 wunex3 10694 rdgeqoa 37358 oaomoecl 43267 oawordex2 43315 omabs2 43321 tfsconcatlem 43325 tfsconcatun 43326 tfsconcatfv2 43329 tfsconcatfv 43330 tfsconcatrn 43331 tfsconcatb0 43333 tfsconcatrev 43337 ofoafg 43343 oaun3lem1 43363 oaun3lem2 43364 oaun3lem3 43365 oaun3lem4 43366 oadif1 43369 oaun2 43370 oaun3 43371 naddgeoa 43383 naddwordnexlem3 43388 oawordex3 43389 naddwordnexlem4 43390 oa1cl 43436 |
| Copyright terms: Public domain | W3C validator |