![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrtelqelz | Structured version Visualization version GIF version |
Description: If the 𝑁-th root of an integer 𝐴 is rational, that root is must be an integer. Similar to zsqrtelqelz 16755, generalized to positive integer roots. (Contributed by Steven Nguyen, 6-Apr-2023.) |
Ref | Expression |
---|---|
zrtelqelz | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (𝐴↑𝑐(1 / 𝑁)) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qdencl 16738 | . . . . 5 ⊢ ((𝐴↑𝑐(1 / 𝑁)) ∈ ℚ → (denom‘(𝐴↑𝑐(1 / 𝑁))) ∈ ℕ) | |
2 | 1 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (denom‘(𝐴↑𝑐(1 / 𝑁))) ∈ ℕ) |
3 | 2 | nnrpd 13062 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (denom‘(𝐴↑𝑐(1 / 𝑁))) ∈ ℝ+) |
4 | 1rp 13026 | . . . 4 ⊢ 1 ∈ ℝ+ | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → 1 ∈ ℝ+) |
6 | simp2 1134 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → 𝑁 ∈ ℕ) | |
7 | 6 | nnzd 12631 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → 𝑁 ∈ ℤ) |
8 | 1exp 14105 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (1↑𝑁) = 1) |
10 | zcn 12609 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
11 | 10 | 3ad2ant1 1130 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → 𝐴 ∈ ℂ) |
12 | cxproot 26714 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑐(1 / 𝑁))↑𝑁) = 𝐴) | |
13 | 11, 6, 12 | syl2anc 582 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → ((𝐴↑𝑐(1 / 𝑁))↑𝑁) = 𝐴) |
14 | 13 | fveq2d 6897 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (denom‘((𝐴↑𝑐(1 / 𝑁))↑𝑁)) = (denom‘𝐴)) |
15 | zq 12984 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
16 | qden1elz 16754 | . . . . . . . 8 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | |
17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
18 | 17 | ibir 267 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (denom‘𝐴) = 1) |
19 | 18 | 3ad2ant1 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (denom‘𝐴) = 1) |
20 | 14, 19 | eqtrd 2766 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (denom‘((𝐴↑𝑐(1 / 𝑁))↑𝑁)) = 1) |
21 | simp3 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) | |
22 | 6 | nnnn0d 12578 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → 𝑁 ∈ ℕ0) |
23 | denexp 16759 | . . . . 5 ⊢ (((𝐴↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘((𝐴↑𝑐(1 / 𝑁))↑𝑁)) = ((denom‘(𝐴↑𝑐(1 / 𝑁)))↑𝑁)) | |
24 | 21, 22, 23 | syl2anc 582 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (denom‘((𝐴↑𝑐(1 / 𝑁))↑𝑁)) = ((denom‘(𝐴↑𝑐(1 / 𝑁)))↑𝑁)) |
25 | 9, 20, 24 | 3eqtr2rd 2773 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → ((denom‘(𝐴↑𝑐(1 / 𝑁)))↑𝑁) = (1↑𝑁)) |
26 | 3, 5, 6, 25 | exp11nnd 14273 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (denom‘(𝐴↑𝑐(1 / 𝑁))) = 1) |
27 | qden1elz 16754 | . . 3 ⊢ ((𝐴↑𝑐(1 / 𝑁)) ∈ ℚ → ((denom‘(𝐴↑𝑐(1 / 𝑁))) = 1 ↔ (𝐴↑𝑐(1 / 𝑁)) ∈ ℤ)) | |
28 | 27 | 3ad2ant3 1132 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → ((denom‘(𝐴↑𝑐(1 / 𝑁))) = 1 ↔ (𝐴↑𝑐(1 / 𝑁)) ∈ ℤ)) |
29 | 26, 28 | mpbid 231 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (𝐴↑𝑐(1 / 𝑁)) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6546 (class class class)co 7416 ℂcc 11147 1c1 11150 / cdiv 11912 ℕcn 12258 ℕ0cn0 12518 ℤcz 12604 ℚcq 12978 ℝ+crp 13022 ↑cexp 14075 denomcdenom 16731 ↑𝑐ccxp 26579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 ax-addf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-fi 9447 df-sup 9478 df-inf 9479 df-oi 9546 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-q 12979 df-rp 13023 df-xneg 13140 df-xadd 13141 df-xmul 13142 df-ioo 13376 df-ioc 13377 df-ico 13378 df-icc 13379 df-fz 13533 df-fzo 13676 df-fl 13806 df-mod 13884 df-seq 14016 df-exp 14076 df-fac 14286 df-bc 14315 df-hash 14343 df-shft 15067 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-limsup 15468 df-clim 15485 df-rlim 15486 df-sum 15686 df-ef 16064 df-sin 16066 df-cos 16067 df-pi 16069 df-dvds 16252 df-gcd 16490 df-numer 16732 df-denom 16733 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-hom 17285 df-cco 17286 df-rest 17432 df-topn 17433 df-0g 17451 df-gsum 17452 df-topgen 17453 df-pt 17454 df-prds 17457 df-xrs 17512 df-qtop 17517 df-imas 17518 df-xps 17520 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-mulg 19058 df-cntz 19307 df-cmn 19776 df-psmet 21331 df-xmet 21332 df-met 21333 df-bl 21334 df-mopn 21335 df-fbas 21336 df-fg 21337 df-cnfld 21340 df-top 22884 df-topon 22901 df-topsp 22923 df-bases 22937 df-cld 23011 df-ntr 23012 df-cls 23013 df-nei 23090 df-lp 23128 df-perf 23129 df-cn 23219 df-cnp 23220 df-haus 23307 df-tx 23554 df-hmeo 23747 df-fil 23838 df-fm 23930 df-flim 23931 df-flf 23932 df-xms 24314 df-ms 24315 df-tms 24316 df-cncf 24886 df-limc 25883 df-dv 25884 df-log 26580 df-cxp 26581 |
This theorem is referenced by: rtprmirr 26785 |
Copyright terms: Public domain | W3C validator |