| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | metcn.2 | . . 3
⊢ 𝐽 = (MetOpen‘𝐶) | 
| 2 |  | metcn.4 | . . 3
⊢ 𝐾 = (MetOpen‘𝐷) | 
| 3 | 1, 2 | metcnpi2 24558 | . 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑧 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴)) | 
| 4 |  | rphalfcl 13062 | . . . 4
⊢ (𝑧 ∈ ℝ+
→ (𝑧 / 2) ∈
ℝ+) | 
| 5 | 4 | ad2antrl 728 | . . 3
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ ∀𝑦 ∈
𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴))) → (𝑧 / 2) ∈
ℝ+) | 
| 6 |  | simplll 775 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐶 ∈ (∞Met‘𝑋)) | 
| 7 |  | simprr 773 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) | 
| 8 |  | simplrl 777 | . . . . . . . . . . 11
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) | 
| 9 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 10 | 9 | cnprcl 23253 | . . . . . . . . . . 11
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 ∈ ∪ 𝐽) | 
| 11 | 8, 10 | syl 17 | . . . . . . . . . 10
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝑃 ∈ ∪ 𝐽) | 
| 12 | 1 | mopnuni 24451 | . . . . . . . . . . 11
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 13 | 6, 12 | syl 17 | . . . . . . . . . 10
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝑋 = ∪ 𝐽) | 
| 14 | 11, 13 | eleqtrrd 2844 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝑃 ∈ 𝑋) | 
| 15 |  | xmetcl 24341 | . . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑦𝐶𝑃) ∈
ℝ*) | 
| 16 | 6, 7, 14, 15 | syl3anc 1373 | . . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝑦𝐶𝑃) ∈
ℝ*) | 
| 17 | 4 | ad2antrl 728 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝑧 / 2) ∈
ℝ+) | 
| 18 | 17 | rpxrd 13078 | . . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝑧 / 2) ∈
ℝ*) | 
| 19 |  | rpxr 13044 | . . . . . . . . 9
⊢ (𝑧 ∈ ℝ+
→ 𝑧 ∈
ℝ*) | 
| 20 | 19 | ad2antrl 728 | . . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝑧 ∈ ℝ*) | 
| 21 |  | rphalflt 13064 | . . . . . . . . 9
⊢ (𝑧 ∈ ℝ+
→ (𝑧 / 2) < 𝑧) | 
| 22 | 21 | ad2antrl 728 | . . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝑧 / 2) < 𝑧) | 
| 23 |  | xrlelttr 13198 | . . . . . . . . . 10
⊢ (((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*
∧ 𝑧 ∈
ℝ*) → (((𝑦𝐶𝑃) ≤ (𝑧 / 2) ∧ (𝑧 / 2) < 𝑧) → (𝑦𝐶𝑃) < 𝑧)) | 
| 24 | 23 | expcomd 416 | . . . . . . . . 9
⊢ (((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*
∧ 𝑧 ∈
ℝ*) → ((𝑧 / 2) < 𝑧 → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧))) | 
| 25 | 24 | imp 406 | . . . . . . . 8
⊢ ((((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*
∧ 𝑧 ∈
ℝ*) ∧ (𝑧 / 2) < 𝑧) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧)) | 
| 26 | 16, 18, 20, 22, 25 | syl31anc 1375 | . . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧)) | 
| 27 |  | simpllr 776 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐷 ∈ (∞Met‘𝑌)) | 
| 28 | 1 | mopntopon 24449 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 29 | 6, 28 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 30 | 2 | mopntopon 24449 | . . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 31 | 27, 30 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 32 |  | cnpf2 23258 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) | 
| 33 | 29, 31, 8, 32 | syl3anc 1373 | . . . . . . . . . 10
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐹:𝑋⟶𝑌) | 
| 34 | 33, 7 | ffvelcdmd 7105 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝐹‘𝑦) ∈ 𝑌) | 
| 35 | 33, 14 | ffvelcdmd 7105 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝐹‘𝑃) ∈ 𝑌) | 
| 36 |  | xmetcl 24341 | . . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑦) ∈ 𝑌 ∧ (𝐹‘𝑃) ∈ 𝑌) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ∈
ℝ*) | 
| 37 | 27, 34, 35, 36 | syl3anc 1373 | . . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ∈
ℝ*) | 
| 38 |  | simplrr 778 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐴 ∈
ℝ+) | 
| 39 | 38 | rpxrd 13078 | . . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐴 ∈
ℝ*) | 
| 40 |  | xrltle 13191 | . . . . . . . 8
⊢ ((((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ∈ ℝ* ∧ 𝐴 ∈ ℝ*)
→ (((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) | 
| 41 | 37, 39, 40 | syl2anc 584 | . . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) | 
| 42 | 26, 41 | imim12d 81 | . . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴))) | 
| 43 | 42 | anassrs 467 | . . . . 5
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌)) ∧
(𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+)
∧ 𝑦 ∈ 𝑋) → (((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴))) | 
| 44 | 43 | ralimdva 3167 | . . . 4
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+)
→ (∀𝑦 ∈
𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴) → ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴))) | 
| 45 | 44 | impr 454 | . . 3
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ ∀𝑦 ∈
𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴))) → ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) | 
| 46 |  | breq2 5147 | . . . 4
⊢ (𝑥 = (𝑧 / 2) → ((𝑦𝐶𝑃) ≤ 𝑥 ↔ (𝑦𝐶𝑃) ≤ (𝑧 / 2))) | 
| 47 | 46 | rspceaimv 3628 | . . 3
⊢ (((𝑧 / 2) ∈ ℝ+
∧ ∀𝑦 ∈
𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) | 
| 48 | 5, 45, 47 | syl2anc 584 | . 2
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ ∀𝑦 ∈
𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴))) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) | 
| 49 | 3, 48 | rexlimddv 3161 | 1
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) |