MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnpi3 Structured version   Visualization version   GIF version

Theorem metcnpi3 23702
Description: Epsilon-delta property of a metric space function continuous at 𝑃. A variation of metcnpi2 23701 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnpi3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦

Proof of Theorem metcnpi3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpen‘𝐶)
2 metcn.4 . . 3 𝐾 = (MetOpen‘𝐷)
31, 2metcnpi2 23701 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))
4 rphalfcl 12757 . . . 4 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
54ad2antrl 725 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))) → (𝑧 / 2) ∈ ℝ+)
6 simplll 772 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐶 ∈ (∞Met‘𝑋))
7 simprr 770 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑦𝑋)
8 simplrl 774 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
9 eqid 2738 . . . . . . . . . . . 12 𝐽 = 𝐽
109cnprcl 22396 . . . . . . . . . . 11 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 𝐽)
118, 10syl 17 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑃 𝐽)
121mopnuni 23594 . . . . . . . . . . 11 (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
136, 12syl 17 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑋 = 𝐽)
1411, 13eleqtrrd 2842 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑃𝑋)
15 xmetcl 23484 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) → (𝑦𝐶𝑃) ∈ ℝ*)
166, 7, 14, 15syl3anc 1370 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑦𝐶𝑃) ∈ ℝ*)
174ad2antrl 725 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑧 / 2) ∈ ℝ+)
1817rpxrd 12773 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑧 / 2) ∈ ℝ*)
19 rpxr 12739 . . . . . . . . 9 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
2019ad2antrl 725 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑧 ∈ ℝ*)
21 rphalflt 12759 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (𝑧 / 2) < 𝑧)
2221ad2antrl 725 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑧 / 2) < 𝑧)
23 xrlelttr 12890 . . . . . . . . . 10 (((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*𝑧 ∈ ℝ*) → (((𝑦𝐶𝑃) ≤ (𝑧 / 2) ∧ (𝑧 / 2) < 𝑧) → (𝑦𝐶𝑃) < 𝑧))
2423expcomd 417 . . . . . . . . 9 (((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑧 / 2) < 𝑧 → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧)))
2524imp 407 . . . . . . . 8 ((((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝑧 / 2) < 𝑧) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧))
2616, 18, 20, 22, 25syl31anc 1372 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧))
27 simpllr 773 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐷 ∈ (∞Met‘𝑌))
281mopntopon 23592 . . . . . . . . . . . 12 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
296, 28syl 17 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
302mopntopon 23592 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
3127, 30syl 17 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
32 cnpf2 22401 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
3329, 31, 8, 32syl3anc 1370 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐹:𝑋𝑌)
3433, 7ffvelrnd 6962 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝐹𝑦) ∈ 𝑌)
3533, 14ffvelrnd 6962 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝐹𝑃) ∈ 𝑌)
36 xmetcl 23484 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑃) ∈ 𝑌) → ((𝐹𝑦)𝐷(𝐹𝑃)) ∈ ℝ*)
3727, 34, 35, 36syl3anc 1370 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → ((𝐹𝑦)𝐷(𝐹𝑃)) ∈ ℝ*)
38 simplrr 775 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐴 ∈ ℝ+)
3938rpxrd 12773 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐴 ∈ ℝ*)
40 xrltle 12883 . . . . . . . 8 ((((𝐹𝑦)𝐷(𝐹𝑃)) ∈ ℝ*𝐴 ∈ ℝ*) → (((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
4137, 39, 40syl2anc 584 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
4226, 41imim12d 81 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4342anassrs 468 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦𝑋) → (((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4443ralimdva 3108 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴) → ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4544impr 455 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))) → ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
46 breq2 5078 . . . 4 (𝑥 = (𝑧 / 2) → ((𝑦𝐶𝑃) ≤ 𝑥 ↔ (𝑦𝐶𝑃) ≤ (𝑧 / 2)))
4746rspceaimv 3565 . . 3 (((𝑧 / 2) ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
485, 45, 47syl2anc 584 . 2 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
493, 48rexlimddv 3220 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065   cuni 4839   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  *cxr 11008   < clt 11009  cle 11010   / cdiv 11632  2c2 12028  +crp 12730  ∞Metcxmet 20582  MetOpencmopn 20587  TopOnctopon 22059   CnP ccnp 22376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cnp 22379
This theorem is referenced by:  blocnilem  29166
  Copyright terms: Public domain W3C validator