MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvg Structured version   Visualization version   GIF version

Theorem caucvg 15030
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvg.1 𝑍 = (ℤ𝑀)
caucvg.2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
caucvg.3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
caucvg.4 (𝜑𝐹𝑉)
Assertion
Ref Expression
caucvg (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem caucvg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6649 . . . . . 6 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
21cbvmptv 5136 . . . . 5 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑛𝑍 ↦ (𝐹𝑛))
3 caucvg.1 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
4 uzssz 12256 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
53, 4eqsstri 3952 . . . . . . . . 9 𝑍 ⊆ ℤ
6 zssre 11980 . . . . . . . . 9 ℤ ⊆ ℝ
75, 6sstri 3927 . . . . . . . 8 𝑍 ⊆ ℝ
87a1i 11 . . . . . . 7 (𝜑𝑍 ⊆ ℝ)
9 caucvg.2 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
102eqcomi 2810 . . . . . . . 8 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑘𝑍 ↦ (𝐹𝑘))
119, 10fmptd 6859 . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)):𝑍⟶ℂ)
12 1rp 12385 . . . . . . . . . . 11 1 ∈ ℝ+
1312ne0ii 4256 . . . . . . . . . 10 + ≠ ∅
14 caucvg.3 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
15 r19.2z 4401 . . . . . . . . . 10 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
1613, 14, 15sylancr 590 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
17 eluzel2 12240 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1817, 3eleq2s 2911 . . . . . . . . . . . 12 (𝑗𝑍𝑀 ∈ ℤ)
1918a1d 25 . . . . . . . . . . 11 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ))
2019rexlimiv 3242 . . . . . . . . . 10 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ)
2120rexlimivw 3244 . . . . . . . . 9 (∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ)
2216, 21syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
233uzsup 13230 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
2422, 23syl 17 . . . . . . 7 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
255sseli 3914 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ ℤ)
265sseli 3914 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
27 eluz 12249 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
2825, 26, 27syl2an 598 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
2928biimprd 251 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘𝑍) → (𝑗𝑘𝑘 ∈ (ℤ𝑗)))
30 fveq2 6649 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
31 eqid 2801 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑛𝑍 ↦ (𝐹𝑛))
32 fvex 6662 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑛) ∈ V
3330, 31, 32fvmpt3i 6754 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍 → ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) = (𝐹𝑘))
34 fveq2 6649 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
3534, 31, 32fvmpt3i 6754 . . . . . . . . . . . . . . . . . 18 (𝑗𝑍 → ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗) = (𝐹𝑗))
3633, 35oveqan12rd 7159 . . . . . . . . . . . . . . . . 17 ((𝑗𝑍𝑘𝑍) → (((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗)) = ((𝐹𝑘) − (𝐹𝑗)))
3736fveq2d 6653 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑘𝑍) → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
3837breq1d 5043 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑘𝑍) → ((abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3938biimprd 251 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘𝑍) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4029, 39imim12d 81 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘𝑍) → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥)))
4140ex 416 . . . . . . . . . . . 12 (𝑗𝑍 → (𝑘𝑍 → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))))
4241com23 86 . . . . . . . . . . 11 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑘𝑍 → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))))
4342ralimdv2 3146 . . . . . . . . . 10 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥)))
4443reximia 3208 . . . . . . . . 9 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4544ralimi 3131 . . . . . . . 8 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4614, 45syl 17 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
478, 11, 24, 46caucvgr 15027 . . . . . 6 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)) ∈ dom ⇝𝑟 )
4811, 24rlimdm 14903 . . . . . 6 (𝜑 → ((𝑛𝑍 ↦ (𝐹𝑛)) ∈ dom ⇝𝑟 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
4947, 48mpbid 235 . . . . 5 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
502, 49eqbrtrid 5068 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
51 eqid 2801 . . . . . 6 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘))
529, 51fmptd 6859 . . . . 5 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)):𝑍⟶ℂ)
533, 22, 52rlimclim 14898 . . . 4 (𝜑 → ((𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5450, 53mpbid 235 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
55 caucvg.4 . . . 4 (𝜑𝐹𝑉)
563, 51climmpt 14923 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5722, 55, 56syl2anc 587 . . 3 (𝜑 → (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5854, 57mpbird 260 . 2 (𝜑𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
59 climrel 14844 . . 3 Rel ⇝
6059releldmi 5786 . 2 (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) → 𝐹 ∈ dom ⇝ )
6158, 60syl 17 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  wss 3884  c0 4246   class class class wbr 5033  cmpt 5113  dom cdm 5523  cfv 6328  (class class class)co 7139  supcsup 8892  cc 10528  cr 10529  1c1 10531  +∞cpnf 10665  *cxr 10667   < clt 10668  cle 10669  cmin 10863  cz 11973  cuz 12235  +crp 12381  abscabs 14588  cli 14836  𝑟 crli 14837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-fl 13161  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841
This theorem is referenced by:  caucvgb  15031  cvgcmpce  15168  ulmcau  24993  dchrisumlem3  26078  rrncmslem  35263
  Copyright terms: Public domain W3C validator