MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvg Structured version   Visualization version   GIF version

Theorem caucvg 15711
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvg.1 𝑍 = (ℤ𝑀)
caucvg.2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
caucvg.3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
caucvg.4 (𝜑𝐹𝑉)
Assertion
Ref Expression
caucvg (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem caucvg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . . 6 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
21cbvmptv 5260 . . . . 5 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑛𝑍 ↦ (𝐹𝑛))
3 caucvg.1 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
4 uzssz 12896 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
53, 4eqsstri 4029 . . . . . . . . 9 𝑍 ⊆ ℤ
6 zssre 12617 . . . . . . . . 9 ℤ ⊆ ℝ
75, 6sstri 4004 . . . . . . . 8 𝑍 ⊆ ℝ
87a1i 11 . . . . . . 7 (𝜑𝑍 ⊆ ℝ)
9 caucvg.2 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
102eqcomi 2743 . . . . . . . 8 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑘𝑍 ↦ (𝐹𝑘))
119, 10fmptd 7133 . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)):𝑍⟶ℂ)
12 1rp 13035 . . . . . . . . . . 11 1 ∈ ℝ+
1312ne0ii 4349 . . . . . . . . . 10 + ≠ ∅
14 caucvg.3 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
15 r19.2z 4500 . . . . . . . . . 10 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
1613, 14, 15sylancr 587 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
17 eluzel2 12880 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1817, 3eleq2s 2856 . . . . . . . . . . . 12 (𝑗𝑍𝑀 ∈ ℤ)
1918a1d 25 . . . . . . . . . . 11 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ))
2019rexlimiv 3145 . . . . . . . . . 10 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ)
2120rexlimivw 3148 . . . . . . . . 9 (∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ)
2216, 21syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
233uzsup 13899 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
2422, 23syl 17 . . . . . . 7 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
255sseli 3990 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ ℤ)
265sseli 3990 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
27 eluz 12889 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
2825, 26, 27syl2an 596 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
2928biimprd 248 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘𝑍) → (𝑗𝑘𝑘 ∈ (ℤ𝑗)))
30 fveq2 6906 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
31 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑛𝑍 ↦ (𝐹𝑛))
32 fvex 6919 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑛) ∈ V
3330, 31, 32fvmpt3i 7020 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍 → ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) = (𝐹𝑘))
34 fveq2 6906 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
3534, 31, 32fvmpt3i 7020 . . . . . . . . . . . . . . . . . 18 (𝑗𝑍 → ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗) = (𝐹𝑗))
3633, 35oveqan12rd 7450 . . . . . . . . . . . . . . . . 17 ((𝑗𝑍𝑘𝑍) → (((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗)) = ((𝐹𝑘) − (𝐹𝑗)))
3736fveq2d 6910 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑘𝑍) → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
3837breq1d 5157 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑘𝑍) → ((abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3938biimprd 248 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘𝑍) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4029, 39imim12d 81 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘𝑍) → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥)))
4140ex 412 . . . . . . . . . . . 12 (𝑗𝑍 → (𝑘𝑍 → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))))
4241com23 86 . . . . . . . . . . 11 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑘𝑍 → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))))
4342ralimdv2 3160 . . . . . . . . . 10 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥)))
4443reximia 3078 . . . . . . . . 9 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4544ralimi 3080 . . . . . . . 8 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4614, 45syl 17 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
478, 11, 24, 46caucvgr 15708 . . . . . 6 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)) ∈ dom ⇝𝑟 )
4811, 24rlimdm 15583 . . . . . 6 (𝜑 → ((𝑛𝑍 ↦ (𝐹𝑛)) ∈ dom ⇝𝑟 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
4947, 48mpbid 232 . . . . 5 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
502, 49eqbrtrid 5182 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
51 eqid 2734 . . . . . 6 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘))
529, 51fmptd 7133 . . . . 5 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)):𝑍⟶ℂ)
533, 22, 52rlimclim 15578 . . . 4 (𝜑 → ((𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5450, 53mpbid 232 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
55 caucvg.4 . . . 4 (𝜑𝐹𝑉)
563, 51climmpt 15603 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5722, 55, 56syl2anc 584 . . 3 (𝜑 → (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5854, 57mpbird 257 . 2 (𝜑𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
59 climrel 15524 . . 3 Rel ⇝
6059releldmi 5961 . 2 (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) → 𝐹 ∈ dom ⇝ )
6158, 60syl 17 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  wss 3962  c0 4338   class class class wbr 5147  cmpt 5230  dom cdm 5688  cfv 6562  (class class class)co 7430  supcsup 9477  cc 11150  cr 11151  1c1 11153  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  cmin 11489  cz 12610  cuz 12875  +crp 13031  abscabs 15269  cli 15516  𝑟 crli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-ico 13389  df-fl 13828  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521
This theorem is referenced by:  caucvgb  15712  cvgcmpce  15850  ulmcau  26452  dchrisumlem3  27549  rrncmslem  37818
  Copyright terms: Public domain W3C validator