Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
2 | 1 | cbvmptv 5183 |
. . . . 5
⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) = (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) |
3 | | caucvg.1 |
. . . . . . . . . 10
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | | uzssz 12532 |
. . . . . . . . . 10
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
5 | 3, 4 | eqsstri 3951 |
. . . . . . . . 9
⊢ 𝑍 ⊆
ℤ |
6 | | zssre 12256 |
. . . . . . . . 9
⊢ ℤ
⊆ ℝ |
7 | 5, 6 | sstri 3926 |
. . . . . . . 8
⊢ 𝑍 ⊆
ℝ |
8 | 7 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ⊆ ℝ) |
9 | | caucvg.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
10 | 2 | eqcomi 2747 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) |
11 | 9, 10 | fmptd 6970 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)):𝑍⟶ℂ) |
12 | | 1rp 12663 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ+ |
13 | 12 | ne0ii 4268 |
. . . . . . . . . 10
⊢
ℝ+ ≠ ∅ |
14 | | caucvg.3 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
15 | | r19.2z 4422 |
. . . . . . . . . 10
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
16 | 13, 14, 15 | sylancr 586 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
17 | | eluzel2 12516 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
18 | 17, 3 | eleq2s 2857 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ 𝑍 → 𝑀 ∈ ℤ) |
19 | 18 | a1d 25 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → 𝑀 ∈ ℤ)) |
20 | 19 | rexlimiv 3208 |
. . . . . . . . . 10
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → 𝑀 ∈ ℤ) |
21 | 20 | rexlimivw 3210 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → 𝑀 ∈ ℤ) |
22 | 16, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
23 | 3 | uzsup 13511 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) =
+∞) |
24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ (𝜑 → sup(𝑍, ℝ*, < ) =
+∞) |
25 | 5 | sseli 3913 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
26 | 5 | sseli 3913 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
27 | | eluz 12525 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈
(ℤ≥‘𝑗) ↔ 𝑗 ≤ 𝑘)) |
28 | 25, 26, 27 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑘 ∈ (ℤ≥‘𝑗) ↔ 𝑗 ≤ 𝑘)) |
29 | 28 | biimprd 247 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑗 ≤ 𝑘 → 𝑘 ∈ (ℤ≥‘𝑗))) |
30 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
31 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) |
32 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹‘𝑛) ∈ V |
33 | 30, 31, 32 | fvmpt3i 6862 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ 𝑍 → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) = (𝐹‘𝑘)) |
34 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑗 → (𝐹‘𝑛) = (𝐹‘𝑗)) |
35 | 34, 31, 32 | fvmpt3i 6862 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ 𝑍 → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗) = (𝐹‘𝑗)) |
36 | 33, 35 | oveqan12rd 7275 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗)) = ((𝐹‘𝑘) − (𝐹‘𝑗))) |
37 | 36 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (abs‘(((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
38 | 37 | breq1d 5080 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → ((abs‘(((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗))) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
39 | 38 | biimprd 247 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → (abs‘(((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗))) < 𝑥)) |
40 | 29, 39 | imim12d 81 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ (ℤ≥‘𝑗) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → (𝑗 ≤ 𝑘 → (abs‘(((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗))) < 𝑥))) |
41 | 40 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑗) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → (𝑗 ≤ 𝑘 → (abs‘(((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗))) < 𝑥)))) |
42 | 41 | com23 86 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑗) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → (𝑘 ∈ 𝑍 → (𝑗 ≤ 𝑘 → (abs‘(((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗))) < 𝑥)))) |
43 | 42 | ralimdv2 3101 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → ∀𝑘 ∈ 𝑍 (𝑗 ≤ 𝑘 → (abs‘(((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗))) < 𝑥))) |
44 | 43 | reximia 3172 |
. . . . . . . . 9
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑗 ≤ 𝑘 → (abs‘(((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗))) < 𝑥)) |
45 | 44 | ralimi 3086 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑗 ≤ 𝑘 → (abs‘(((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗))) < 𝑥)) |
46 | 14, 45 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑗 ≤ 𝑘 → (abs‘(((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑘) − ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))‘𝑗))) < 𝑥)) |
47 | 8, 11, 24, 46 | caucvgr 15315 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ∈ dom ⇝𝑟
) |
48 | 11, 24 | rlimdm 15188 |
. . . . . 6
⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ∈ dom ⇝𝑟
↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 (
⇝𝑟 ‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))))) |
49 | 47, 48 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 (
⇝𝑟 ‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)))) |
50 | 2, 49 | eqbrtrid 5105 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝𝑟 (
⇝𝑟 ‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)))) |
51 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) |
52 | 9, 51 | fmptd 6970 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)):𝑍⟶ℂ) |
53 | 3, 22, 52 | rlimclim 15183 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝𝑟 (
⇝𝑟 ‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))) ↔ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ ( ⇝𝑟
‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))))) |
54 | 50, 53 | mpbid 231 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ ( ⇝𝑟
‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)))) |
55 | | caucvg.4 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
56 | 3, 51 | climmpt 15208 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ ( ⇝𝑟
‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))) ↔ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ ( ⇝𝑟
‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))))) |
57 | 22, 55, 56 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐹 ⇝ ( ⇝𝑟
‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))) ↔ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇝ ( ⇝𝑟
‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))))) |
58 | 54, 57 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐹 ⇝ ( ⇝𝑟
‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)))) |
59 | | climrel 15129 |
. . 3
⊢ Rel
⇝ |
60 | 59 | releldmi 5846 |
. 2
⊢ (𝐹 ⇝ (
⇝𝑟 ‘(𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛))) → 𝐹 ∈ dom ⇝ ) |
61 | 58, 60 | syl 17 |
1
⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |