MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvg Structured version   Visualization version   GIF version

Theorem caucvg 15621
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvg.1 𝑍 = (ℤ𝑀)
caucvg.2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
caucvg.3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
caucvg.4 (𝜑𝐹𝑉)
Assertion
Ref Expression
caucvg (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem caucvg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . 6 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
21cbvmptv 5206 . . . . 5 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑛𝑍 ↦ (𝐹𝑛))
3 caucvg.1 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
4 uzssz 12790 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
53, 4eqsstri 3990 . . . . . . . . 9 𝑍 ⊆ ℤ
6 zssre 12512 . . . . . . . . 9 ℤ ⊆ ℝ
75, 6sstri 3953 . . . . . . . 8 𝑍 ⊆ ℝ
87a1i 11 . . . . . . 7 (𝜑𝑍 ⊆ ℝ)
9 caucvg.2 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
102eqcomi 2738 . . . . . . . 8 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑘𝑍 ↦ (𝐹𝑘))
119, 10fmptd 7068 . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)):𝑍⟶ℂ)
12 1rp 12931 . . . . . . . . . . 11 1 ∈ ℝ+
1312ne0ii 4303 . . . . . . . . . 10 + ≠ ∅
14 caucvg.3 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
15 r19.2z 4454 . . . . . . . . . 10 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
1613, 14, 15sylancr 587 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
17 eluzel2 12774 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1817, 3eleq2s 2846 . . . . . . . . . . . 12 (𝑗𝑍𝑀 ∈ ℤ)
1918a1d 25 . . . . . . . . . . 11 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ))
2019rexlimiv 3127 . . . . . . . . . 10 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ)
2120rexlimivw 3130 . . . . . . . . 9 (∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ)
2216, 21syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
233uzsup 13801 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
2422, 23syl 17 . . . . . . 7 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
255sseli 3939 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ ℤ)
265sseli 3939 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
27 eluz 12783 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
2825, 26, 27syl2an 596 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
2928biimprd 248 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘𝑍) → (𝑗𝑘𝑘 ∈ (ℤ𝑗)))
30 fveq2 6840 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
31 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑛𝑍 ↦ (𝐹𝑛))
32 fvex 6853 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑛) ∈ V
3330, 31, 32fvmpt3i 6955 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍 → ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) = (𝐹𝑘))
34 fveq2 6840 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
3534, 31, 32fvmpt3i 6955 . . . . . . . . . . . . . . . . . 18 (𝑗𝑍 → ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗) = (𝐹𝑗))
3633, 35oveqan12rd 7389 . . . . . . . . . . . . . . . . 17 ((𝑗𝑍𝑘𝑍) → (((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗)) = ((𝐹𝑘) − (𝐹𝑗)))
3736fveq2d 6844 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑘𝑍) → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
3837breq1d 5112 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑘𝑍) → ((abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3938biimprd 248 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘𝑍) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4029, 39imim12d 81 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘𝑍) → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥)))
4140ex 412 . . . . . . . . . . . 12 (𝑗𝑍 → (𝑘𝑍 → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))))
4241com23 86 . . . . . . . . . . 11 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑘𝑍 → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))))
4342ralimdv2 3142 . . . . . . . . . 10 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥)))
4443reximia 3064 . . . . . . . . 9 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4544ralimi 3066 . . . . . . . 8 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4614, 45syl 17 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
478, 11, 24, 46caucvgr 15618 . . . . . 6 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)) ∈ dom ⇝𝑟 )
4811, 24rlimdm 15493 . . . . . 6 (𝜑 → ((𝑛𝑍 ↦ (𝐹𝑛)) ∈ dom ⇝𝑟 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
4947, 48mpbid 232 . . . . 5 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
502, 49eqbrtrid 5137 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
51 eqid 2729 . . . . . 6 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘))
529, 51fmptd 7068 . . . . 5 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)):𝑍⟶ℂ)
533, 22, 52rlimclim 15488 . . . 4 (𝜑 → ((𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5450, 53mpbid 232 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
55 caucvg.4 . . . 4 (𝜑𝐹𝑉)
563, 51climmpt 15513 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5722, 55, 56syl2anc 584 . . 3 (𝜑 → (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5854, 57mpbird 257 . 2 (𝜑𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
59 climrel 15434 . . 3 Rel ⇝
6059releldmi 5901 . 2 (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) → 𝐹 ∈ dom ⇝ )
6158, 60syl 17 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369  supcsup 9367  cc 11042  cr 11043  1c1 11045  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381  cz 12505  cuz 12769  +crp 12927  abscabs 15176  cli 15426  𝑟 crli 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431
This theorem is referenced by:  caucvgb  15622  cvgcmpce  15760  ulmcau  26337  dchrisumlem3  27435  rrncmslem  37819
  Copyright terms: Public domain W3C validator