Step | Hyp | Ref
| Expression |
1 | | kqval.2 |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
2 | 1 | kqid 22787 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
3 | 2 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
4 | | cnima 22324 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (◡𝐹 “ 𝑣) ∈ 𝐽) |
5 | 3, 4 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (◡𝐹 “ 𝑣) ∈ 𝐽) |
6 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑜 = (◡𝐹 “ 𝑣) → (𝑧 ∈ 𝑜 ↔ 𝑧 ∈ (◡𝐹 “ 𝑣))) |
7 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑜 = (◡𝐹 “ 𝑣) → (𝑤 ∈ 𝑜 ↔ 𝑤 ∈ (◡𝐹 “ 𝑣))) |
8 | 6, 7 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑜 = (◡𝐹 “ 𝑣) → ((𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) ↔ (𝑧 ∈ (◡𝐹 “ 𝑣) → 𝑤 ∈ (◡𝐹 “ 𝑣)))) |
9 | 8 | rspcv 3547 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑣) ∈ 𝐽 → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → (𝑧 ∈ (◡𝐹 “ 𝑣) → 𝑤 ∈ (◡𝐹 “ 𝑣)))) |
10 | 5, 9 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → (𝑧 ∈ (◡𝐹 “ 𝑣) → 𝑤 ∈ (◡𝐹 “ 𝑣)))) |
11 | 1 | kqffn 22784 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
12 | 11 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝐹 Fn 𝑋) |
13 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝐹 Fn 𝑋) |
14 | | fnfun 6517 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
15 | 13, 14 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → Fun 𝐹) |
16 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
17 | 16 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑧 ∈ 𝑋) |
18 | 13 | fndmd 6522 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → dom 𝐹 = 𝑋) |
19 | 17, 18 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑧 ∈ dom 𝐹) |
20 | | fvimacnv 6912 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → ((𝐹‘𝑧) ∈ 𝑣 ↔ 𝑧 ∈ (◡𝐹 “ 𝑣))) |
21 | 15, 19, 20 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → ((𝐹‘𝑧) ∈ 𝑣 ↔ 𝑧 ∈ (◡𝐹 “ 𝑣))) |
22 | | simprr 769 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝑋) |
23 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑤 ∈ 𝑋) |
24 | 23, 18 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑤 ∈ dom 𝐹) |
25 | | fvimacnv 6912 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑤 ∈ dom 𝐹) → ((𝐹‘𝑤) ∈ 𝑣 ↔ 𝑤 ∈ (◡𝐹 “ 𝑣))) |
26 | 15, 24, 25 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → ((𝐹‘𝑤) ∈ 𝑣 ↔ 𝑤 ∈ (◡𝐹 “ 𝑣))) |
27 | 21, 26 | imbi12d 344 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) ↔ (𝑧 ∈ (◡𝐹 “ 𝑣) → 𝑤 ∈ (◡𝐹 “ 𝑣)))) |
28 | 10, 27 | sylibrd 258 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣))) |
29 | 28 | ralrimdva 3112 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣))) |
30 | | simplr 765 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (KQ‘𝐽) ∈ Fre) |
31 | | fnfvelrn 6940 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ran 𝐹) |
32 | 12, 16, 31 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑧) ∈ ran 𝐹) |
33 | 1 | kqtopon 22786 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
34 | 33 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
35 | | toponuni 21971 |
. . . . . . . . 9
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
ran 𝐹 = ∪ (KQ‘𝐽)) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ran 𝐹 = ∪
(KQ‘𝐽)) |
37 | 32, 36 | eleqtrd 2841 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑧) ∈ ∪
(KQ‘𝐽)) |
38 | | fnfvelrn 6940 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) ∈ ran 𝐹) |
39 | 12, 22, 38 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ran 𝐹) |
40 | 39, 36 | eleqtrd 2841 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ∪
(KQ‘𝐽)) |
41 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ (KQ‘𝐽) = ∪
(KQ‘𝐽) |
42 | 41 | t1sep2 22428 |
. . . . . . 7
⊢
(((KQ‘𝐽)
∈ Fre ∧ (𝐹‘𝑧) ∈ ∪
(KQ‘𝐽) ∧ (𝐹‘𝑤) ∈ ∪
(KQ‘𝐽)) →
(∀𝑣 ∈
(KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤))) |
43 | 30, 37, 40, 42 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤))) |
44 | 29, 43 | syld 47 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → (𝐹‘𝑧) = (𝐹‘𝑤))) |
45 | 1 | kqfeq 22783 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
46 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑜 = 𝑦 → (𝑧 ∈ 𝑜 ↔ 𝑧 ∈ 𝑦)) |
47 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑜 = 𝑦 → (𝑤 ∈ 𝑜 ↔ 𝑤 ∈ 𝑦)) |
48 | 46, 47 | bibi12d 345 |
. . . . . . . . 9
⊢ (𝑜 = 𝑦 → ((𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜) ↔ (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
49 | 48 | cbvralvw 3372 |
. . . . . . . 8
⊢
(∀𝑜 ∈
𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦)) |
50 | 45, 49 | bitr4di 288 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
51 | 50 | 3expb 1118 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
52 | 51 | adantlr 711 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
53 | 44, 52 | sylibd 238 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
54 | 53 | ralrimivva 3114 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) →
∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
55 | 54 | ex 412 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre →
∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)))) |
56 | 1 | kqopn 22793 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽) → (𝐹 “ 𝑜) ∈ (KQ‘𝐽)) |
57 | 56 | ad4ant14 748 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝐹 “ 𝑜) ∈ (KQ‘𝐽)) |
58 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝐹 “ 𝑜) → ((𝐹‘𝑧) ∈ 𝑣 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑜))) |
59 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝐹 “ 𝑜) → ((𝐹‘𝑤) ∈ 𝑣 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑜))) |
60 | 58, 59 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝐹 “ 𝑜) → (((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) ↔ ((𝐹‘𝑧) ∈ (𝐹 “ 𝑜) → (𝐹‘𝑤) ∈ (𝐹 “ 𝑜)))) |
61 | 60 | rspcv 3547 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑜) ∈ (KQ‘𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → ((𝐹‘𝑧) ∈ (𝐹 “ 𝑜) → (𝐹‘𝑤) ∈ (𝐹 “ 𝑜)))) |
62 | 57, 61 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → ((𝐹‘𝑧) ∈ (𝐹 “ 𝑜) → (𝐹‘𝑤) ∈ (𝐹 “ 𝑜)))) |
63 | 1 | kqfvima 22789 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽 ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑜 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑜))) |
64 | 63 | 3expa 1116 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑜 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑜))) |
65 | 64 | an32s 648 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑧 ∈ 𝑜 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑜))) |
66 | 65 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑧 ∈ 𝑜 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑜))) |
67 | 1 | kqfvima 22789 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽 ∧ 𝑤 ∈ 𝑋) → (𝑤 ∈ 𝑜 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑜))) |
68 | 67 | 3expa 1116 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑤 ∈ 𝑋) → (𝑤 ∈ 𝑜 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑜))) |
69 | 68 | an32s 648 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑤 ∈ 𝑜 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑜))) |
70 | 69 | adantllr 715 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑤 ∈ 𝑜 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑜))) |
71 | 66, 70 | imbi12d 344 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → ((𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) ↔ ((𝐹‘𝑧) ∈ (𝐹 “ 𝑜) → (𝐹‘𝑤) ∈ (𝐹 “ 𝑜)))) |
72 | 62, 71 | sylibrd 258 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜))) |
73 | 72 | ralrimdva 3112 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜))) |
74 | 1 | kqfval 22782 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦}) |
75 | 74 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑧) = {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦}) |
76 | 1 | kqfval 22782 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) = {𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦}) |
77 | 76 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) = {𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦}) |
78 | 75, 77 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦})) |
79 | | rabbi 3309 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦}) |
80 | 49, 79 | bitri 274 |
. . . . . . . . 9
⊢
(∀𝑜 ∈
𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦}) |
81 | 78, 80 | bitr4di 288 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
82 | 81 | biimprd 247 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜) → (𝐹‘𝑧) = (𝐹‘𝑤))) |
83 | 73, 82 | imim12d 81 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → ((∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
84 | 83 | ralimdva 3102 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) → (∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)) → ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
85 | 84 | ralimdva 3102 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)) → ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
86 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝐹‘𝑧) → (𝑎 ∈ 𝑣 ↔ (𝐹‘𝑧) ∈ 𝑣)) |
87 | 86 | imbi1d 341 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐹‘𝑧) → ((𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) ↔ ((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣))) |
88 | 87 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑎 = (𝐹‘𝑧) → (∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) ↔ ∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣))) |
89 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑎 = (𝐹‘𝑧) → (𝑎 = 𝑏 ↔ (𝐹‘𝑧) = 𝑏)) |
90 | 88, 89 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑎 = (𝐹‘𝑧) → ((∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏) ↔ (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏))) |
91 | 90 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑎 = (𝐹‘𝑧) → (∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏) ↔ ∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏))) |
92 | 91 | ralrn 6946 |
. . . . . 6
⊢ (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧 ∈ 𝑋 ∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏))) |
93 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝐹‘𝑤) → (𝑏 ∈ 𝑣 ↔ (𝐹‘𝑤) ∈ 𝑣)) |
94 | 93 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑤) → (((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) ↔ ((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣))) |
95 | 94 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑤) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) ↔ ∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣))) |
96 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑤) → ((𝐹‘𝑧) = 𝑏 ↔ (𝐹‘𝑧) = (𝐹‘𝑤))) |
97 | 95, 96 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑏 = (𝐹‘𝑤) → ((∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏) ↔ (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
98 | 97 | ralrn 6946 |
. . . . . . 7
⊢ (𝐹 Fn 𝑋 → (∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏) ↔ ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
99 | 98 | ralbidv 3120 |
. . . . . 6
⊢ (𝐹 Fn 𝑋 → (∀𝑧 ∈ 𝑋 ∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
100 | 92, 99 | bitrd 278 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
101 | 11, 100 | syl 17 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
102 | 85, 101 | sylibrd 258 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)) → ∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏))) |
103 | | ist1-2 22406 |
. . . 4
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
((KQ‘𝐽) ∈ Fre
↔ ∀𝑎 ∈ ran
𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏))) |
104 | 33, 103 | syl 17 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔
∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏))) |
105 | 102, 104 | sylibrd 258 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)) → (KQ‘𝐽) ∈ Fre)) |
106 | 55, 105 | impbid 211 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔
∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)))) |