MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isr0 Structured version   Visualization version   GIF version

Theorem isr0 23233
Description: The property "𝐽 is an R0 space". A space is R0 if any two topologically distinguishable points are separated (there is an open set containing each one and disjoint from the other). Or in contraposition, if every open set which contains π‘₯ also contains 𝑦, so there is no separation, then π‘₯ and 𝑦 are members of the same open sets. We have chosen not to give this definition a name, because it turns out that a space is R0 if and only if its Kolmogorov quotient is T1, so that is what we prove here. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
Assertion
Ref Expression
isr0 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ((KQβ€˜π½) ∈ Fre ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ))))
Distinct variable groups:   𝑀,π‘œ,π‘₯,𝑦,𝑧,𝐽   π‘œ,𝐹,𝑀,𝑧   π‘œ,𝑋,𝑀,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐹(π‘₯,𝑦)

Proof of Theorem isr0
Dummy variables π‘Ž 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . . . 12 𝐹 = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
21kqid 23224 . . . . . . . . . . 11 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐹 ∈ (𝐽 Cn (KQβ€˜π½)))
32ad2antrr 725 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ 𝐹 ∈ (𝐽 Cn (KQβ€˜π½)))
4 cnima 22761 . . . . . . . . . 10 ((𝐹 ∈ (𝐽 Cn (KQβ€˜π½)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ (◑𝐹 β€œ 𝑣) ∈ 𝐽)
53, 4sylan 581 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ (◑𝐹 β€œ 𝑣) ∈ 𝐽)
6 eleq2 2823 . . . . . . . . . . 11 (π‘œ = (◑𝐹 β€œ 𝑣) β†’ (𝑧 ∈ π‘œ ↔ 𝑧 ∈ (◑𝐹 β€œ 𝑣)))
7 eleq2 2823 . . . . . . . . . . 11 (π‘œ = (◑𝐹 β€œ 𝑣) β†’ (𝑀 ∈ π‘œ ↔ 𝑀 ∈ (◑𝐹 β€œ 𝑣)))
86, 7imbi12d 345 . . . . . . . . . 10 (π‘œ = (◑𝐹 β€œ 𝑣) β†’ ((𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) ↔ (𝑧 ∈ (◑𝐹 β€œ 𝑣) β†’ 𝑀 ∈ (◑𝐹 β€œ 𝑣))))
98rspcv 3609 . . . . . . . . 9 ((◑𝐹 β€œ 𝑣) ∈ 𝐽 β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ (𝑧 ∈ (◑𝐹 β€œ 𝑣) β†’ 𝑀 ∈ (◑𝐹 β€œ 𝑣))))
105, 9syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ (𝑧 ∈ (◑𝐹 β€œ 𝑣) β†’ 𝑀 ∈ (◑𝐹 β€œ 𝑣))))
111kqffn 23221 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐹 Fn 𝑋)
1211ad2antrr 725 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ 𝐹 Fn 𝑋)
1312adantr 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ 𝐹 Fn 𝑋)
14 fnfun 6647 . . . . . . . . . . 11 (𝐹 Fn 𝑋 β†’ Fun 𝐹)
1513, 14syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ Fun 𝐹)
16 simprl 770 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ 𝑧 ∈ 𝑋)
1716adantr 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ 𝑧 ∈ 𝑋)
1813fndmd 6652 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ dom 𝐹 = 𝑋)
1917, 18eleqtrrd 2837 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ 𝑧 ∈ dom 𝐹)
20 fvimacnv 7052 . . . . . . . . . 10 ((Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹) β†’ ((πΉβ€˜π‘§) ∈ 𝑣 ↔ 𝑧 ∈ (◑𝐹 β€œ 𝑣)))
2115, 19, 20syl2anc 585 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ ((πΉβ€˜π‘§) ∈ 𝑣 ↔ 𝑧 ∈ (◑𝐹 β€œ 𝑣)))
22 simprr 772 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ 𝑀 ∈ 𝑋)
2322adantr 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ 𝑀 ∈ 𝑋)
2423, 18eleqtrrd 2837 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ 𝑀 ∈ dom 𝐹)
25 fvimacnv 7052 . . . . . . . . . 10 ((Fun 𝐹 ∧ 𝑀 ∈ dom 𝐹) β†’ ((πΉβ€˜π‘€) ∈ 𝑣 ↔ 𝑀 ∈ (◑𝐹 β€œ 𝑣)))
2615, 24, 25syl2anc 585 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ ((πΉβ€˜π‘€) ∈ 𝑣 ↔ 𝑀 ∈ (◑𝐹 β€œ 𝑣)))
2721, 26imbi12d 345 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ (((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) ↔ (𝑧 ∈ (◑𝐹 β€œ 𝑣) β†’ 𝑀 ∈ (◑𝐹 β€œ 𝑣))))
2810, 27sylibrd 259 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ ((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣)))
2928ralrimdva 3155 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣)))
30 simplr 768 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (KQβ€˜π½) ∈ Fre)
31 fnfvelrn 7080 . . . . . . . . 9 ((𝐹 Fn 𝑋 ∧ 𝑧 ∈ 𝑋) β†’ (πΉβ€˜π‘§) ∈ ran 𝐹)
3212, 16, 31syl2anc 585 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (πΉβ€˜π‘§) ∈ ran 𝐹)
331kqtopon 23223 . . . . . . . . . 10 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (KQβ€˜π½) ∈ (TopOnβ€˜ran 𝐹))
3433ad2antrr 725 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (KQβ€˜π½) ∈ (TopOnβ€˜ran 𝐹))
35 toponuni 22408 . . . . . . . . 9 ((KQβ€˜π½) ∈ (TopOnβ€˜ran 𝐹) β†’ ran 𝐹 = βˆͺ (KQβ€˜π½))
3634, 35syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ ran 𝐹 = βˆͺ (KQβ€˜π½))
3732, 36eleqtrd 2836 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (πΉβ€˜π‘§) ∈ βˆͺ (KQβ€˜π½))
38 fnfvelrn 7080 . . . . . . . . 9 ((𝐹 Fn 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) ∈ ran 𝐹)
3912, 22, 38syl2anc 585 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (πΉβ€˜π‘€) ∈ ran 𝐹)
4039, 36eleqtrd 2836 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (πΉβ€˜π‘€) ∈ βˆͺ (KQβ€˜π½))
41 eqid 2733 . . . . . . . 8 βˆͺ (KQβ€˜π½) = βˆͺ (KQβ€˜π½)
4241t1sep2 22865 . . . . . . 7 (((KQβ€˜π½) ∈ Fre ∧ (πΉβ€˜π‘§) ∈ βˆͺ (KQβ€˜π½) ∧ (πΉβ€˜π‘€) ∈ βˆͺ (KQβ€˜π½)) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€)))
4330, 37, 40, 42syl3anc 1372 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€)))
4429, 43syld 47 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€)))
451kqfeq 23220 . . . . . . . 8 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ βˆ€π‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑀 ∈ 𝑦)))
46 eleq2 2823 . . . . . . . . . 10 (π‘œ = 𝑦 β†’ (𝑧 ∈ π‘œ ↔ 𝑧 ∈ 𝑦))
47 eleq2 2823 . . . . . . . . . 10 (π‘œ = 𝑦 β†’ (𝑀 ∈ π‘œ ↔ 𝑀 ∈ 𝑦))
4846, 47bibi12d 346 . . . . . . . . 9 (π‘œ = 𝑦 β†’ ((𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ) ↔ (𝑧 ∈ 𝑦 ↔ 𝑀 ∈ 𝑦)))
4948cbvralvw 3235 . . . . . . . 8 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ) ↔ βˆ€π‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑀 ∈ 𝑦))
5045, 49bitr4di 289 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
51503expb 1121 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
5251adantlr 714 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
5344, 52sylibd 238 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
5453ralrimivva 3201 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) β†’ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
5554ex 414 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ((KQβ€˜π½) ∈ Fre β†’ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ))))
561kqopn 23230 . . . . . . . . . . 11 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘œ ∈ 𝐽) β†’ (𝐹 β€œ π‘œ) ∈ (KQβ€˜π½))
5756ad4ant14 751 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝐹 β€œ π‘œ) ∈ (KQβ€˜π½))
58 eleq2 2823 . . . . . . . . . . . 12 (𝑣 = (𝐹 β€œ π‘œ) β†’ ((πΉβ€˜π‘§) ∈ 𝑣 ↔ (πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ)))
59 eleq2 2823 . . . . . . . . . . . 12 (𝑣 = (𝐹 β€œ π‘œ) β†’ ((πΉβ€˜π‘€) ∈ 𝑣 ↔ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ)))
6058, 59imbi12d 345 . . . . . . . . . . 11 (𝑣 = (𝐹 β€œ π‘œ) β†’ (((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) ↔ ((πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ) β†’ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ))))
6160rspcv 3609 . . . . . . . . . 10 ((𝐹 β€œ π‘œ) ∈ (KQβ€˜π½) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ ((πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ) β†’ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ))))
6257, 61syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ ((πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ) β†’ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ))))
631kqfvima 23226 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘œ ∈ 𝐽 ∧ 𝑧 ∈ 𝑋) β†’ (𝑧 ∈ π‘œ ↔ (πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ)))
64633expa 1119 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘œ ∈ 𝐽) ∧ 𝑧 ∈ 𝑋) β†’ (𝑧 ∈ π‘œ ↔ (πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ)))
6564an32s 651 . . . . . . . . . . 11 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝑧 ∈ π‘œ ↔ (πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ)))
6665adantlr 714 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝑧 ∈ π‘œ ↔ (πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ)))
671kqfvima 23226 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘œ ∈ 𝐽 ∧ 𝑀 ∈ 𝑋) β†’ (𝑀 ∈ π‘œ ↔ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ)))
68673expa 1119 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘œ ∈ 𝐽) ∧ 𝑀 ∈ 𝑋) β†’ (𝑀 ∈ π‘œ ↔ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ)))
6968an32s 651 . . . . . . . . . . 11 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝑀 ∈ π‘œ ↔ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ)))
7069adantllr 718 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝑀 ∈ π‘œ ↔ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ)))
7166, 70imbi12d 345 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ ((𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) ↔ ((πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ) β†’ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ))))
7262, 71sylibrd 259 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ)))
7372ralrimdva 3155 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ)))
741kqfval 23219 . . . . . . . . . . 11 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) β†’ (πΉβ€˜π‘§) = {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦})
7574adantr 482 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘§) = {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦})
761kqfval 23219 . . . . . . . . . . 11 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) = {𝑦 ∈ 𝐽 ∣ 𝑀 ∈ 𝑦})
7776adantlr 714 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) = {𝑦 ∈ 𝐽 ∣ 𝑀 ∈ 𝑦})
7875, 77eqeq12d 2749 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑀 ∈ 𝑦}))
79 rabbi 3463 . . . . . . . . . 10 (βˆ€π‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑀 ∈ 𝑦) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑀 ∈ 𝑦})
8049, 79bitri 275 . . . . . . . . 9 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑀 ∈ 𝑦})
8178, 80bitr4di 289 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
8281biimprd 247 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€)))
8373, 82imim12d 81 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ ((βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
8483ralimdva 3168 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) β†’ (βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)) β†’ βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
8584ralimdva 3168 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)) β†’ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
86 eleq1 2822 . . . . . . . . . . 11 (π‘Ž = (πΉβ€˜π‘§) β†’ (π‘Ž ∈ 𝑣 ↔ (πΉβ€˜π‘§) ∈ 𝑣))
8786imbi1d 342 . . . . . . . . . 10 (π‘Ž = (πΉβ€˜π‘§) β†’ ((π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) ↔ ((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣)))
8887ralbidv 3178 . . . . . . . . 9 (π‘Ž = (πΉβ€˜π‘§) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) ↔ βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣)))
89 eqeq1 2737 . . . . . . . . 9 (π‘Ž = (πΉβ€˜π‘§) β†’ (π‘Ž = 𝑏 ↔ (πΉβ€˜π‘§) = 𝑏))
9088, 89imbi12d 345 . . . . . . . 8 (π‘Ž = (πΉβ€˜π‘§) β†’ ((βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏) ↔ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏)))
9190ralbidv 3178 . . . . . . 7 (π‘Ž = (πΉβ€˜π‘§) β†’ (βˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏) ↔ βˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏)))
9291ralrn 7087 . . . . . 6 (𝐹 Fn 𝑋 β†’ (βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏) ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏)))
93 eleq1 2822 . . . . . . . . . . 11 (𝑏 = (πΉβ€˜π‘€) β†’ (𝑏 ∈ 𝑣 ↔ (πΉβ€˜π‘€) ∈ 𝑣))
9493imbi2d 341 . . . . . . . . . 10 (𝑏 = (πΉβ€˜π‘€) β†’ (((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) ↔ ((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣)))
9594ralbidv 3178 . . . . . . . . 9 (𝑏 = (πΉβ€˜π‘€) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) ↔ βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣)))
96 eqeq2 2745 . . . . . . . . 9 (𝑏 = (πΉβ€˜π‘€) β†’ ((πΉβ€˜π‘§) = 𝑏 ↔ (πΉβ€˜π‘§) = (πΉβ€˜π‘€)))
9795, 96imbi12d 345 . . . . . . . 8 (𝑏 = (πΉβ€˜π‘€) β†’ ((βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏) ↔ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
9897ralrn 7087 . . . . . . 7 (𝐹 Fn 𝑋 β†’ (βˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏) ↔ βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
9998ralbidv 3178 . . . . . 6 (𝐹 Fn 𝑋 β†’ (βˆ€π‘§ ∈ 𝑋 βˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏) ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
10092, 99bitrd 279 . . . . 5 (𝐹 Fn 𝑋 β†’ (βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏) ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
10111, 100syl 17 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏) ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
10285, 101sylibrd 259 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)) β†’ βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏)))
103 ist1-2 22843 . . . 4 ((KQβ€˜π½) ∈ (TopOnβ€˜ran 𝐹) β†’ ((KQβ€˜π½) ∈ Fre ↔ βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏)))
10433, 103syl 17 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ((KQβ€˜π½) ∈ Fre ↔ βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏)))
105102, 104sylibrd 259 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)) β†’ (KQβ€˜π½) ∈ Fre))
10655, 105impbid 211 1 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ((KQβ€˜π½) ∈ Fre ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433  βˆͺ cuni 4908   ↦ cmpt 5231  β—‘ccnv 5675  dom cdm 5676  ran crn 5677   β€œ cima 5679  Fun wfun 6535   Fn wfn 6536  β€˜cfv 6541  (class class class)co 7406  TopOnctopon 22404   Cn ccn 22720  Frect1 22803  KQckq 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-map 8819  df-topgen 17386  df-qtop 17450  df-top 22388  df-topon 22405  df-cld 22515  df-cn 22723  df-t1 22810  df-kq 23190
This theorem is referenced by:  r0sep  23244
  Copyright terms: Public domain W3C validator