MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isr0 Structured version   Visualization version   GIF version

Theorem isr0 21953
Description: The property "𝐽 is an R0 space". A space is R0 if any two topologically distinguishable points are separated (there is an open set containing each one and disjoint from the other). Or in contraposition, if every open set which contains 𝑥 also contains 𝑦, so there is no separation, then 𝑥 and 𝑦 are members of the same open sets. We have chosen not to give this definition a name, because it turns out that a space is R0 if and only if its Kolmogorov quotient is T1, so that is what we prove here. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
isr0 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜))))
Distinct variable groups:   𝑤,𝑜,𝑥,𝑦,𝑧,𝐽   𝑜,𝐹,𝑤,𝑧   𝑜,𝑋,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem isr0
Dummy variables 𝑎 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . . . 12 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqid 21944 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
32ad2antrr 716 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
4 cnima 21481 . . . . . . . . . 10 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (𝐹𝑣) ∈ 𝐽)
53, 4sylan 575 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (𝐹𝑣) ∈ 𝐽)
6 eleq2 2848 . . . . . . . . . . 11 (𝑜 = (𝐹𝑣) → (𝑧𝑜𝑧 ∈ (𝐹𝑣)))
7 eleq2 2848 . . . . . . . . . . 11 (𝑜 = (𝐹𝑣) → (𝑤𝑜𝑤 ∈ (𝐹𝑣)))
86, 7imbi12d 336 . . . . . . . . . 10 (𝑜 = (𝐹𝑣) → ((𝑧𝑜𝑤𝑜) ↔ (𝑧 ∈ (𝐹𝑣) → 𝑤 ∈ (𝐹𝑣))))
98rspcv 3507 . . . . . . . . 9 ((𝐹𝑣) ∈ 𝐽 → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → (𝑧 ∈ (𝐹𝑣) → 𝑤 ∈ (𝐹𝑣))))
105, 9syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → (𝑧 ∈ (𝐹𝑣) → 𝑤 ∈ (𝐹𝑣))))
111kqffn 21941 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
1211ad2antrr 716 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → 𝐹 Fn 𝑋)
1312adantr 474 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝐹 Fn 𝑋)
14 fnfun 6235 . . . . . . . . . . 11 (𝐹 Fn 𝑋 → Fun 𝐹)
1513, 14syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → Fun 𝐹)
16 simprl 761 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
1716adantr 474 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑧𝑋)
18 fndm 6237 . . . . . . . . . . . 12 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
1913, 18syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → dom 𝐹 = 𝑋)
2017, 19eleqtrrd 2862 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑧 ∈ dom 𝐹)
21 fvimacnv 6597 . . . . . . . . . 10 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) ∈ 𝑣𝑧 ∈ (𝐹𝑣)))
2215, 20, 21syl2anc 579 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → ((𝐹𝑧) ∈ 𝑣𝑧 ∈ (𝐹𝑣)))
23 simprr 763 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
2423adantr 474 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑤𝑋)
2524, 19eleqtrrd 2862 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑤 ∈ dom 𝐹)
26 fvimacnv 6597 . . . . . . . . . 10 ((Fun 𝐹𝑤 ∈ dom 𝐹) → ((𝐹𝑤) ∈ 𝑣𝑤 ∈ (𝐹𝑣)))
2715, 25, 26syl2anc 579 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → ((𝐹𝑤) ∈ 𝑣𝑤 ∈ (𝐹𝑣)))
2822, 27imbi12d 336 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) ↔ (𝑧 ∈ (𝐹𝑣) → 𝑤 ∈ (𝐹𝑣))))
2910, 28sylibrd 251 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣)))
3029ralrimdva 3151 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣)))
31 simplr 759 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (KQ‘𝐽) ∈ Fre)
32 fnfvelrn 6622 . . . . . . . . 9 ((𝐹 Fn 𝑋𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
3312, 16, 32syl2anc 579 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) ∈ ran 𝐹)
341kqtopon 21943 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
3534ad2antrr 716 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
36 toponuni 21130 . . . . . . . . 9 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ran 𝐹 = (KQ‘𝐽))
3735, 36syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → ran 𝐹 = (KQ‘𝐽))
3833, 37eleqtrd 2861 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) ∈ (KQ‘𝐽))
39 fnfvelrn 6622 . . . . . . . . 9 ((𝐹 Fn 𝑋𝑤𝑋) → (𝐹𝑤) ∈ ran 𝐹)
4012, 23, 39syl2anc 579 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) ∈ ran 𝐹)
4140, 37eleqtrd 2861 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) ∈ (KQ‘𝐽))
42 eqid 2778 . . . . . . . 8 (KQ‘𝐽) = (KQ‘𝐽)
4342t1sep2 21585 . . . . . . 7 (((KQ‘𝐽) ∈ Fre ∧ (𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹𝑤) ∈ (KQ‘𝐽)) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤)))
4431, 38, 41, 43syl3anc 1439 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤)))
4530, 44syld 47 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → (𝐹𝑧) = (𝐹𝑤)))
461kqfeq 21940 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
47 eleq2 2848 . . . . . . . . . 10 (𝑜 = 𝑦 → (𝑧𝑜𝑧𝑦))
48 eleq2 2848 . . . . . . . . . 10 (𝑜 = 𝑦 → (𝑤𝑜𝑤𝑦))
4947, 48bibi12d 337 . . . . . . . . 9 (𝑜 = 𝑦 → ((𝑧𝑜𝑤𝑜) ↔ (𝑧𝑦𝑤𝑦)))
5049cbvralv 3367 . . . . . . . 8 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦))
5146, 50syl6bbr 281 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
52513expb 1110 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
5352adantlr 705 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
5445, 53sylibd 231 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
5554ralrimivva 3153 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
5655ex 403 . 2 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre → ∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜))))
57 simpll 757 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → 𝐽 ∈ (TopOn‘𝑋))
581kqopn 21950 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽) → (𝐹𝑜) ∈ (KQ‘𝐽))
5957, 58sylan 575 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (𝐹𝑜) ∈ (KQ‘𝐽))
60 eleq2 2848 . . . . . . . . . . . 12 (𝑣 = (𝐹𝑜) → ((𝐹𝑧) ∈ 𝑣 ↔ (𝐹𝑧) ∈ (𝐹𝑜)))
61 eleq2 2848 . . . . . . . . . . . 12 (𝑣 = (𝐹𝑜) → ((𝐹𝑤) ∈ 𝑣 ↔ (𝐹𝑤) ∈ (𝐹𝑜)))
6260, 61imbi12d 336 . . . . . . . . . . 11 (𝑣 = (𝐹𝑜) → (((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) ↔ ((𝐹𝑧) ∈ (𝐹𝑜) → (𝐹𝑤) ∈ (𝐹𝑜))))
6362rspcv 3507 . . . . . . . . . 10 ((𝐹𝑜) ∈ (KQ‘𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → ((𝐹𝑧) ∈ (𝐹𝑜) → (𝐹𝑤) ∈ (𝐹𝑜))))
6459, 63syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → ((𝐹𝑧) ∈ (𝐹𝑜) → (𝐹𝑤) ∈ (𝐹𝑜))))
651kqfvima 21946 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽𝑧𝑋) → (𝑧𝑜 ↔ (𝐹𝑧) ∈ (𝐹𝑜)))
66653expa 1108 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽) ∧ 𝑧𝑋) → (𝑧𝑜 ↔ (𝐹𝑧) ∈ (𝐹𝑜)))
6766an32s 642 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑜𝐽) → (𝑧𝑜 ↔ (𝐹𝑧) ∈ (𝐹𝑜)))
6867adantlr 705 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (𝑧𝑜 ↔ (𝐹𝑧) ∈ (𝐹𝑜)))
691kqfvima 21946 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽𝑤𝑋) → (𝑤𝑜 ↔ (𝐹𝑤) ∈ (𝐹𝑜)))
70693expa 1108 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽) ∧ 𝑤𝑋) → (𝑤𝑜 ↔ (𝐹𝑤) ∈ (𝐹𝑜)))
7170an32s 642 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (𝑤𝑜 ↔ (𝐹𝑤) ∈ (𝐹𝑜)))
7271adantllr 709 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (𝑤𝑜 ↔ (𝐹𝑤) ∈ (𝐹𝑜)))
7368, 72imbi12d 336 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → ((𝑧𝑜𝑤𝑜) ↔ ((𝐹𝑧) ∈ (𝐹𝑜) → (𝐹𝑤) ∈ (𝐹𝑜))))
7464, 73sylibrd 251 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝑧𝑜𝑤𝑜)))
7574ralrimdva 3151 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
761kqfval 21939 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) → (𝐹𝑧) = {𝑦𝐽𝑧𝑦})
7776adantr 474 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → (𝐹𝑧) = {𝑦𝐽𝑧𝑦})
781kqfval 21939 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝑋) → (𝐹𝑤) = {𝑦𝐽𝑤𝑦})
7978adantlr 705 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → (𝐹𝑤) = {𝑦𝐽𝑤𝑦})
8077, 79eqeq12d 2793 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ {𝑦𝐽𝑧𝑦} = {𝑦𝐽𝑤𝑦}))
81 rabbi 3307 . . . . . . . . . 10 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) ↔ {𝑦𝐽𝑧𝑦} = {𝑦𝐽𝑤𝑦})
8250, 81bitri 267 . . . . . . . . 9 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) ↔ {𝑦𝐽𝑧𝑦} = {𝑦𝐽𝑤𝑦})
8380, 82syl6bbr 281 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
8483biimprd 240 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → (𝐹𝑧) = (𝐹𝑤)))
8575, 84imim12d 81 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
8685ralimdva 3144 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) → (∀𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)) → ∀𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
8786ralimdva 3144 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)) → ∀𝑧𝑋𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
88 eleq1 2847 . . . . . . . . . . 11 (𝑎 = (𝐹𝑧) → (𝑎𝑣 ↔ (𝐹𝑧) ∈ 𝑣))
8988imbi1d 333 . . . . . . . . . 10 (𝑎 = (𝐹𝑧) → ((𝑎𝑣𝑏𝑣) ↔ ((𝐹𝑧) ∈ 𝑣𝑏𝑣)))
9089ralbidv 3168 . . . . . . . . 9 (𝑎 = (𝐹𝑧) → (∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) ↔ ∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣)))
91 eqeq1 2782 . . . . . . . . 9 (𝑎 = (𝐹𝑧) → (𝑎 = 𝑏 ↔ (𝐹𝑧) = 𝑏))
9290, 91imbi12d 336 . . . . . . . 8 (𝑎 = (𝐹𝑧) → ((∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏) ↔ (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏)))
9392ralbidv 3168 . . . . . . 7 (𝑎 = (𝐹𝑧) → (∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏) ↔ ∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏)))
9493ralrn 6628 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧𝑋𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏)))
95 eleq1 2847 . . . . . . . . . . 11 (𝑏 = (𝐹𝑤) → (𝑏𝑣 ↔ (𝐹𝑤) ∈ 𝑣))
9695imbi2d 332 . . . . . . . . . 10 (𝑏 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑣𝑏𝑣) ↔ ((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣)))
9796ralbidv 3168 . . . . . . . . 9 (𝑏 = (𝐹𝑤) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) ↔ ∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣)))
98 eqeq2 2789 . . . . . . . . 9 (𝑏 = (𝐹𝑤) → ((𝐹𝑧) = 𝑏 ↔ (𝐹𝑧) = (𝐹𝑤)))
9997, 98imbi12d 336 . . . . . . . 8 (𝑏 = (𝐹𝑤) → ((∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏) ↔ (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
10099ralrn 6628 . . . . . . 7 (𝐹 Fn 𝑋 → (∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏) ↔ ∀𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
101100ralbidv 3168 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑧𝑋𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏) ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
10294, 101bitrd 271 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
10311, 102syl 17 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
10487, 103sylibrd 251 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)) → ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏)))
105 ist1-2 21563 . . . 4 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏)))
10634, 105syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏)))
107104, 106sylibrd 251 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)) → (KQ‘𝐽) ∈ Fre))
10856, 107impbid 204 1 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  {crab 3094   cuni 4673  cmpt 4967  ccnv 5356  dom cdm 5357  ran crn 5358  cima 5360  Fun wfun 6131   Fn wfn 6132  cfv 6137  (class class class)co 6924  TopOnctopon 21126   Cn ccn 21440  Frect1 21523  KQckq 21909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-map 8144  df-topgen 16494  df-qtop 16557  df-top 21110  df-topon 21127  df-cld 21235  df-cn 21443  df-t1 21530  df-kq 21910
This theorem is referenced by:  r0sep  21964
  Copyright terms: Public domain W3C validator