Step | Hyp | Ref
| Expression |
1 | | kqval.2 |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
2 | 1 | kqid 21944 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
3 | 2 | ad2antrr 716 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
4 | | cnima 21481 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (◡𝐹 “ 𝑣) ∈ 𝐽) |
5 | 3, 4 | sylan 575 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (◡𝐹 “ 𝑣) ∈ 𝐽) |
6 | | eleq2 2848 |
. . . . . . . . . . 11
⊢ (𝑜 = (◡𝐹 “ 𝑣) → (𝑧 ∈ 𝑜 ↔ 𝑧 ∈ (◡𝐹 “ 𝑣))) |
7 | | eleq2 2848 |
. . . . . . . . . . 11
⊢ (𝑜 = (◡𝐹 “ 𝑣) → (𝑤 ∈ 𝑜 ↔ 𝑤 ∈ (◡𝐹 “ 𝑣))) |
8 | 6, 7 | imbi12d 336 |
. . . . . . . . . 10
⊢ (𝑜 = (◡𝐹 “ 𝑣) → ((𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) ↔ (𝑧 ∈ (◡𝐹 “ 𝑣) → 𝑤 ∈ (◡𝐹 “ 𝑣)))) |
9 | 8 | rspcv 3507 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑣) ∈ 𝐽 → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → (𝑧 ∈ (◡𝐹 “ 𝑣) → 𝑤 ∈ (◡𝐹 “ 𝑣)))) |
10 | 5, 9 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → (𝑧 ∈ (◡𝐹 “ 𝑣) → 𝑤 ∈ (◡𝐹 “ 𝑣)))) |
11 | 1 | kqffn 21941 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
12 | 11 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝐹 Fn 𝑋) |
13 | 12 | adantr 474 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝐹 Fn 𝑋) |
14 | | fnfun 6235 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
15 | 13, 14 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → Fun 𝐹) |
16 | | simprl 761 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
17 | 16 | adantr 474 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑧 ∈ 𝑋) |
18 | | fndm 6237 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
19 | 13, 18 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → dom 𝐹 = 𝑋) |
20 | 17, 19 | eleqtrrd 2862 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑧 ∈ dom 𝐹) |
21 | | fvimacnv 6597 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → ((𝐹‘𝑧) ∈ 𝑣 ↔ 𝑧 ∈ (◡𝐹 “ 𝑣))) |
22 | 15, 20, 21 | syl2anc 579 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → ((𝐹‘𝑧) ∈ 𝑣 ↔ 𝑧 ∈ (◡𝐹 “ 𝑣))) |
23 | | simprr 763 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝑋) |
24 | 23 | adantr 474 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑤 ∈ 𝑋) |
25 | 24, 19 | eleqtrrd 2862 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑤 ∈ dom 𝐹) |
26 | | fvimacnv 6597 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑤 ∈ dom 𝐹) → ((𝐹‘𝑤) ∈ 𝑣 ↔ 𝑤 ∈ (◡𝐹 “ 𝑣))) |
27 | 15, 25, 26 | syl2anc 579 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → ((𝐹‘𝑤) ∈ 𝑣 ↔ 𝑤 ∈ (◡𝐹 “ 𝑣))) |
28 | 22, 27 | imbi12d 336 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) ↔ (𝑧 ∈ (◡𝐹 “ 𝑣) → 𝑤 ∈ (◡𝐹 “ 𝑣)))) |
29 | 10, 28 | sylibrd 251 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣))) |
30 | 29 | ralrimdva 3151 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣))) |
31 | | simplr 759 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (KQ‘𝐽) ∈ Fre) |
32 | | fnfvelrn 6622 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ran 𝐹) |
33 | 12, 16, 32 | syl2anc 579 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑧) ∈ ran 𝐹) |
34 | 1 | kqtopon 21943 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
35 | 34 | ad2antrr 716 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
36 | | toponuni 21130 |
. . . . . . . . 9
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
ran 𝐹 = ∪ (KQ‘𝐽)) |
37 | 35, 36 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ran 𝐹 = ∪
(KQ‘𝐽)) |
38 | 33, 37 | eleqtrd 2861 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑧) ∈ ∪
(KQ‘𝐽)) |
39 | | fnfvelrn 6622 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) ∈ ran 𝐹) |
40 | 12, 23, 39 | syl2anc 579 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ran 𝐹) |
41 | 40, 37 | eleqtrd 2861 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ∪
(KQ‘𝐽)) |
42 | | eqid 2778 |
. . . . . . . 8
⊢ ∪ (KQ‘𝐽) = ∪
(KQ‘𝐽) |
43 | 42 | t1sep2 21585 |
. . . . . . 7
⊢
(((KQ‘𝐽)
∈ Fre ∧ (𝐹‘𝑧) ∈ ∪
(KQ‘𝐽) ∧ (𝐹‘𝑤) ∈ ∪
(KQ‘𝐽)) →
(∀𝑣 ∈
(KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤))) |
44 | 31, 38, 41, 43 | syl3anc 1439 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤))) |
45 | 30, 44 | syld 47 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → (𝐹‘𝑧) = (𝐹‘𝑤))) |
46 | 1 | kqfeq 21940 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
47 | | eleq2 2848 |
. . . . . . . . . 10
⊢ (𝑜 = 𝑦 → (𝑧 ∈ 𝑜 ↔ 𝑧 ∈ 𝑦)) |
48 | | eleq2 2848 |
. . . . . . . . . 10
⊢ (𝑜 = 𝑦 → (𝑤 ∈ 𝑜 ↔ 𝑤 ∈ 𝑦)) |
49 | 47, 48 | bibi12d 337 |
. . . . . . . . 9
⊢ (𝑜 = 𝑦 → ((𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜) ↔ (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
50 | 49 | cbvralv 3367 |
. . . . . . . 8
⊢
(∀𝑜 ∈
𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦)) |
51 | 46, 50 | syl6bbr 281 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
52 | 51 | 3expb 1110 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
53 | 52 | adantlr 705 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
54 | 45, 53 | sylibd 231 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
55 | 54 | ralrimivva 3153 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) →
∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
56 | 55 | ex 403 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre →
∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)))) |
57 | | simpll 757 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
58 | 1 | kqopn 21950 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽) → (𝐹 “ 𝑜) ∈ (KQ‘𝐽)) |
59 | 57, 58 | sylan 575 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝐹 “ 𝑜) ∈ (KQ‘𝐽)) |
60 | | eleq2 2848 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝐹 “ 𝑜) → ((𝐹‘𝑧) ∈ 𝑣 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑜))) |
61 | | eleq2 2848 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝐹 “ 𝑜) → ((𝐹‘𝑤) ∈ 𝑣 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑜))) |
62 | 60, 61 | imbi12d 336 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝐹 “ 𝑜) → (((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) ↔ ((𝐹‘𝑧) ∈ (𝐹 “ 𝑜) → (𝐹‘𝑤) ∈ (𝐹 “ 𝑜)))) |
63 | 62 | rspcv 3507 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑜) ∈ (KQ‘𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → ((𝐹‘𝑧) ∈ (𝐹 “ 𝑜) → (𝐹‘𝑤) ∈ (𝐹 “ 𝑜)))) |
64 | 59, 63 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → ((𝐹‘𝑧) ∈ (𝐹 “ 𝑜) → (𝐹‘𝑤) ∈ (𝐹 “ 𝑜)))) |
65 | 1 | kqfvima 21946 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽 ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑜 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑜))) |
66 | 65 | 3expa 1108 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑜 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑜))) |
67 | 66 | an32s 642 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑧 ∈ 𝑜 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑜))) |
68 | 67 | adantlr 705 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑧 ∈ 𝑜 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑜))) |
69 | 1 | kqfvima 21946 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽 ∧ 𝑤 ∈ 𝑋) → (𝑤 ∈ 𝑜 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑜))) |
70 | 69 | 3expa 1108 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑤 ∈ 𝑋) → (𝑤 ∈ 𝑜 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑜))) |
71 | 70 | an32s 642 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑤 ∈ 𝑜 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑜))) |
72 | 71 | adantllr 709 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑤 ∈ 𝑜 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑜))) |
73 | 68, 72 | imbi12d 336 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → ((𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) ↔ ((𝐹‘𝑧) ∈ (𝐹 “ 𝑜) → (𝐹‘𝑤) ∈ (𝐹 “ 𝑜)))) |
74 | 64, 73 | sylibrd 251 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜))) |
75 | 74 | ralrimdva 3151 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜))) |
76 | 1 | kqfval 21939 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦}) |
77 | 76 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑧) = {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦}) |
78 | 1 | kqfval 21939 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) = {𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦}) |
79 | 78 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) = {𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦}) |
80 | 77, 79 | eqeq12d 2793 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦})) |
81 | | rabbi 3307 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦}) |
82 | 50, 81 | bitri 267 |
. . . . . . . . 9
⊢
(∀𝑜 ∈
𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦}) |
83 | 80, 82 | syl6bbr 281 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜))) |
84 | 83 | biimprd 240 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜) → (𝐹‘𝑧) = (𝐹‘𝑤))) |
85 | 75, 84 | imim12d 81 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → ((∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
86 | 85 | ralimdva 3144 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋) → (∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)) → ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
87 | 86 | ralimdva 3144 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)) → ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
88 | | eleq1 2847 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝐹‘𝑧) → (𝑎 ∈ 𝑣 ↔ (𝐹‘𝑧) ∈ 𝑣)) |
89 | 88 | imbi1d 333 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐹‘𝑧) → ((𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) ↔ ((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣))) |
90 | 89 | ralbidv 3168 |
. . . . . . . . 9
⊢ (𝑎 = (𝐹‘𝑧) → (∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) ↔ ∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣))) |
91 | | eqeq1 2782 |
. . . . . . . . 9
⊢ (𝑎 = (𝐹‘𝑧) → (𝑎 = 𝑏 ↔ (𝐹‘𝑧) = 𝑏)) |
92 | 90, 91 | imbi12d 336 |
. . . . . . . 8
⊢ (𝑎 = (𝐹‘𝑧) → ((∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏) ↔ (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏))) |
93 | 92 | ralbidv 3168 |
. . . . . . 7
⊢ (𝑎 = (𝐹‘𝑧) → (∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏) ↔ ∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏))) |
94 | 93 | ralrn 6628 |
. . . . . 6
⊢ (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧 ∈ 𝑋 ∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏))) |
95 | | eleq1 2847 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝐹‘𝑤) → (𝑏 ∈ 𝑣 ↔ (𝐹‘𝑤) ∈ 𝑣)) |
96 | 95 | imbi2d 332 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑤) → (((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) ↔ ((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣))) |
97 | 96 | ralbidv 3168 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑤) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) ↔ ∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣))) |
98 | | eqeq2 2789 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑤) → ((𝐹‘𝑧) = 𝑏 ↔ (𝐹‘𝑧) = (𝐹‘𝑤))) |
99 | 97, 98 | imbi12d 336 |
. . . . . . . 8
⊢ (𝑏 = (𝐹‘𝑤) → ((∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏) ↔ (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
100 | 99 | ralrn 6628 |
. . . . . . 7
⊢ (𝐹 Fn 𝑋 → (∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏) ↔ ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
101 | 100 | ralbidv 3168 |
. . . . . 6
⊢ (𝐹 Fn 𝑋 → (∀𝑧 ∈ 𝑋 ∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝐹‘𝑧) = 𝑏) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
102 | 94, 101 | bitrd 271 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
103 | 11, 102 | syl 17 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑣 → (𝐹‘𝑤) ∈ 𝑣) → (𝐹‘𝑧) = (𝐹‘𝑤)))) |
104 | 87, 103 | sylibrd 251 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)) → ∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏))) |
105 | | ist1-2 21563 |
. . . 4
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
((KQ‘𝐽) ∈ Fre
↔ ∀𝑎 ∈ ran
𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏))) |
106 | 34, 105 | syl 17 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔
∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → 𝑎 = 𝑏))) |
107 | 104, 106 | sylibrd 251 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)) → (KQ‘𝐽) ∈ Fre)) |
108 | 56, 107 | impbid 204 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔
∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)))) |