MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isr0 Structured version   Visualization version   GIF version

Theorem isr0 23241
Description: The property "𝐽 is an R0 space". A space is R0 if any two topologically distinguishable points are separated (there is an open set containing each one and disjoint from the other). Or in contraposition, if every open set which contains π‘₯ also contains 𝑦, so there is no separation, then π‘₯ and 𝑦 are members of the same open sets. We have chosen not to give this definition a name, because it turns out that a space is R0 if and only if its Kolmogorov quotient is T1, so that is what we prove here. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
Assertion
Ref Expression
isr0 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ((KQβ€˜π½) ∈ Fre ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ))))
Distinct variable groups:   𝑀,π‘œ,π‘₯,𝑦,𝑧,𝐽   π‘œ,𝐹,𝑀,𝑧   π‘œ,𝑋,𝑀,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐹(π‘₯,𝑦)

Proof of Theorem isr0
Dummy variables π‘Ž 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . . . 12 𝐹 = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
21kqid 23232 . . . . . . . . . . 11 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐹 ∈ (𝐽 Cn (KQβ€˜π½)))
32ad2antrr 725 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ 𝐹 ∈ (𝐽 Cn (KQβ€˜π½)))
4 cnima 22769 . . . . . . . . . 10 ((𝐹 ∈ (𝐽 Cn (KQβ€˜π½)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ (◑𝐹 β€œ 𝑣) ∈ 𝐽)
53, 4sylan 581 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ (◑𝐹 β€œ 𝑣) ∈ 𝐽)
6 eleq2 2823 . . . . . . . . . . 11 (π‘œ = (◑𝐹 β€œ 𝑣) β†’ (𝑧 ∈ π‘œ ↔ 𝑧 ∈ (◑𝐹 β€œ 𝑣)))
7 eleq2 2823 . . . . . . . . . . 11 (π‘œ = (◑𝐹 β€œ 𝑣) β†’ (𝑀 ∈ π‘œ ↔ 𝑀 ∈ (◑𝐹 β€œ 𝑣)))
86, 7imbi12d 345 . . . . . . . . . 10 (π‘œ = (◑𝐹 β€œ 𝑣) β†’ ((𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) ↔ (𝑧 ∈ (◑𝐹 β€œ 𝑣) β†’ 𝑀 ∈ (◑𝐹 β€œ 𝑣))))
98rspcv 3609 . . . . . . . . 9 ((◑𝐹 β€œ 𝑣) ∈ 𝐽 β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ (𝑧 ∈ (◑𝐹 β€œ 𝑣) β†’ 𝑀 ∈ (◑𝐹 β€œ 𝑣))))
105, 9syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ (𝑧 ∈ (◑𝐹 β€œ 𝑣) β†’ 𝑀 ∈ (◑𝐹 β€œ 𝑣))))
111kqffn 23229 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐹 Fn 𝑋)
1211ad2antrr 725 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ 𝐹 Fn 𝑋)
1312adantr 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ 𝐹 Fn 𝑋)
14 fnfun 6650 . . . . . . . . . . 11 (𝐹 Fn 𝑋 β†’ Fun 𝐹)
1513, 14syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ Fun 𝐹)
16 simprl 770 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ 𝑧 ∈ 𝑋)
1716adantr 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ 𝑧 ∈ 𝑋)
1813fndmd 6655 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ dom 𝐹 = 𝑋)
1917, 18eleqtrrd 2837 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ 𝑧 ∈ dom 𝐹)
20 fvimacnv 7055 . . . . . . . . . 10 ((Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹) β†’ ((πΉβ€˜π‘§) ∈ 𝑣 ↔ 𝑧 ∈ (◑𝐹 β€œ 𝑣)))
2115, 19, 20syl2anc 585 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ ((πΉβ€˜π‘§) ∈ 𝑣 ↔ 𝑧 ∈ (◑𝐹 β€œ 𝑣)))
22 simprr 772 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ 𝑀 ∈ 𝑋)
2322adantr 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ 𝑀 ∈ 𝑋)
2423, 18eleqtrrd 2837 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ 𝑀 ∈ dom 𝐹)
25 fvimacnv 7055 . . . . . . . . . 10 ((Fun 𝐹 ∧ 𝑀 ∈ dom 𝐹) β†’ ((πΉβ€˜π‘€) ∈ 𝑣 ↔ 𝑀 ∈ (◑𝐹 β€œ 𝑣)))
2615, 24, 25syl2anc 585 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ ((πΉβ€˜π‘€) ∈ 𝑣 ↔ 𝑀 ∈ (◑𝐹 β€œ 𝑣)))
2721, 26imbi12d 345 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ (((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) ↔ (𝑧 ∈ (◑𝐹 β€œ 𝑣) β†’ 𝑀 ∈ (◑𝐹 β€œ 𝑣))))
2810, 27sylibrd 259 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) ∧ 𝑣 ∈ (KQβ€˜π½)) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ ((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣)))
2928ralrimdva 3155 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣)))
30 simplr 768 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (KQβ€˜π½) ∈ Fre)
31 fnfvelrn 7083 . . . . . . . . 9 ((𝐹 Fn 𝑋 ∧ 𝑧 ∈ 𝑋) β†’ (πΉβ€˜π‘§) ∈ ran 𝐹)
3212, 16, 31syl2anc 585 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (πΉβ€˜π‘§) ∈ ran 𝐹)
331kqtopon 23231 . . . . . . . . . 10 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (KQβ€˜π½) ∈ (TopOnβ€˜ran 𝐹))
3433ad2antrr 725 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (KQβ€˜π½) ∈ (TopOnβ€˜ran 𝐹))
35 toponuni 22416 . . . . . . . . 9 ((KQβ€˜π½) ∈ (TopOnβ€˜ran 𝐹) β†’ ran 𝐹 = βˆͺ (KQβ€˜π½))
3634, 35syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ ran 𝐹 = βˆͺ (KQβ€˜π½))
3732, 36eleqtrd 2836 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (πΉβ€˜π‘§) ∈ βˆͺ (KQβ€˜π½))
38 fnfvelrn 7083 . . . . . . . . 9 ((𝐹 Fn 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) ∈ ran 𝐹)
3912, 22, 38syl2anc 585 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (πΉβ€˜π‘€) ∈ ran 𝐹)
4039, 36eleqtrd 2836 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (πΉβ€˜π‘€) ∈ βˆͺ (KQβ€˜π½))
41 eqid 2733 . . . . . . . 8 βˆͺ (KQβ€˜π½) = βˆͺ (KQβ€˜π½)
4241t1sep2 22873 . . . . . . 7 (((KQβ€˜π½) ∈ Fre ∧ (πΉβ€˜π‘§) ∈ βˆͺ (KQβ€˜π½) ∧ (πΉβ€˜π‘€) ∈ βˆͺ (KQβ€˜π½)) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€)))
4330, 37, 40, 42syl3anc 1372 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€)))
4429, 43syld 47 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€)))
451kqfeq 23228 . . . . . . . 8 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ βˆ€π‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑀 ∈ 𝑦)))
46 eleq2 2823 . . . . . . . . . 10 (π‘œ = 𝑦 β†’ (𝑧 ∈ π‘œ ↔ 𝑧 ∈ 𝑦))
47 eleq2 2823 . . . . . . . . . 10 (π‘œ = 𝑦 β†’ (𝑀 ∈ π‘œ ↔ 𝑀 ∈ 𝑦))
4846, 47bibi12d 346 . . . . . . . . 9 (π‘œ = 𝑦 β†’ ((𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ) ↔ (𝑧 ∈ 𝑦 ↔ 𝑀 ∈ 𝑦)))
4948cbvralvw 3235 . . . . . . . 8 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ) ↔ βˆ€π‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑀 ∈ 𝑦))
5045, 49bitr4di 289 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
51503expb 1121 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
5251adantlr 714 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
5344, 52sylibd 238 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) ∧ (𝑧 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋)) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
5453ralrimivva 3201 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (KQβ€˜π½) ∈ Fre) β†’ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
5554ex 414 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ((KQβ€˜π½) ∈ Fre β†’ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ))))
561kqopn 23238 . . . . . . . . . . 11 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘œ ∈ 𝐽) β†’ (𝐹 β€œ π‘œ) ∈ (KQβ€˜π½))
5756ad4ant14 751 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝐹 β€œ π‘œ) ∈ (KQβ€˜π½))
58 eleq2 2823 . . . . . . . . . . . 12 (𝑣 = (𝐹 β€œ π‘œ) β†’ ((πΉβ€˜π‘§) ∈ 𝑣 ↔ (πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ)))
59 eleq2 2823 . . . . . . . . . . . 12 (𝑣 = (𝐹 β€œ π‘œ) β†’ ((πΉβ€˜π‘€) ∈ 𝑣 ↔ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ)))
6058, 59imbi12d 345 . . . . . . . . . . 11 (𝑣 = (𝐹 β€œ π‘œ) β†’ (((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) ↔ ((πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ) β†’ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ))))
6160rspcv 3609 . . . . . . . . . 10 ((𝐹 β€œ π‘œ) ∈ (KQβ€˜π½) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ ((πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ) β†’ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ))))
6257, 61syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ ((πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ) β†’ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ))))
631kqfvima 23234 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘œ ∈ 𝐽 ∧ 𝑧 ∈ 𝑋) β†’ (𝑧 ∈ π‘œ ↔ (πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ)))
64633expa 1119 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘œ ∈ 𝐽) ∧ 𝑧 ∈ 𝑋) β†’ (𝑧 ∈ π‘œ ↔ (πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ)))
6564an32s 651 . . . . . . . . . . 11 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝑧 ∈ π‘œ ↔ (πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ)))
6665adantlr 714 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝑧 ∈ π‘œ ↔ (πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ)))
671kqfvima 23234 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘œ ∈ 𝐽 ∧ 𝑀 ∈ 𝑋) β†’ (𝑀 ∈ π‘œ ↔ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ)))
68673expa 1119 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘œ ∈ 𝐽) ∧ 𝑀 ∈ 𝑋) β†’ (𝑀 ∈ π‘œ ↔ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ)))
6968an32s 651 . . . . . . . . . . 11 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝑀 ∈ π‘œ ↔ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ)))
7069adantllr 718 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝑀 ∈ π‘œ ↔ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ)))
7166, 70imbi12d 345 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ ((𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) ↔ ((πΉβ€˜π‘§) ∈ (𝐹 β€œ π‘œ) β†’ (πΉβ€˜π‘€) ∈ (𝐹 β€œ π‘œ))))
7262, 71sylibrd 259 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ)))
7372ralrimdva 3155 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ)))
741kqfval 23227 . . . . . . . . . . 11 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) β†’ (πΉβ€˜π‘§) = {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦})
7574adantr 482 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘§) = {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦})
761kqfval 23227 . . . . . . . . . . 11 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) = {𝑦 ∈ 𝐽 ∣ 𝑀 ∈ 𝑦})
7776adantlr 714 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) = {𝑦 ∈ 𝐽 ∣ 𝑀 ∈ 𝑦})
7875, 77eqeq12d 2749 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑀 ∈ 𝑦}))
79 rabbi 3463 . . . . . . . . . 10 (βˆ€π‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑀 ∈ 𝑦) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑀 ∈ 𝑦})
8049, 79bitri 275 . . . . . . . . 9 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ) ↔ {𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑀 ∈ 𝑦})
8178, 80bitr4di 289 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)))
8281biimprd 247 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€)))
8373, 82imim12d 81 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) ∧ 𝑀 ∈ 𝑋) β†’ ((βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
8483ralimdva 3168 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋) β†’ (βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)) β†’ βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
8584ralimdva 3168 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)) β†’ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
86 eleq1 2822 . . . . . . . . . . 11 (π‘Ž = (πΉβ€˜π‘§) β†’ (π‘Ž ∈ 𝑣 ↔ (πΉβ€˜π‘§) ∈ 𝑣))
8786imbi1d 342 . . . . . . . . . 10 (π‘Ž = (πΉβ€˜π‘§) β†’ ((π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) ↔ ((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣)))
8887ralbidv 3178 . . . . . . . . 9 (π‘Ž = (πΉβ€˜π‘§) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) ↔ βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣)))
89 eqeq1 2737 . . . . . . . . 9 (π‘Ž = (πΉβ€˜π‘§) β†’ (π‘Ž = 𝑏 ↔ (πΉβ€˜π‘§) = 𝑏))
9088, 89imbi12d 345 . . . . . . . 8 (π‘Ž = (πΉβ€˜π‘§) β†’ ((βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏) ↔ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏)))
9190ralbidv 3178 . . . . . . 7 (π‘Ž = (πΉβ€˜π‘§) β†’ (βˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏) ↔ βˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏)))
9291ralrn 7090 . . . . . 6 (𝐹 Fn 𝑋 β†’ (βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏) ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏)))
93 eleq1 2822 . . . . . . . . . . 11 (𝑏 = (πΉβ€˜π‘€) β†’ (𝑏 ∈ 𝑣 ↔ (πΉβ€˜π‘€) ∈ 𝑣))
9493imbi2d 341 . . . . . . . . . 10 (𝑏 = (πΉβ€˜π‘€) β†’ (((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) ↔ ((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣)))
9594ralbidv 3178 . . . . . . . . 9 (𝑏 = (πΉβ€˜π‘€) β†’ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) ↔ βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣)))
96 eqeq2 2745 . . . . . . . . 9 (𝑏 = (πΉβ€˜π‘€) β†’ ((πΉβ€˜π‘§) = 𝑏 ↔ (πΉβ€˜π‘§) = (πΉβ€˜π‘€)))
9795, 96imbi12d 345 . . . . . . . 8 (𝑏 = (πΉβ€˜π‘€) β†’ ((βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏) ↔ (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
9897ralrn 7090 . . . . . . 7 (𝐹 Fn 𝑋 β†’ (βˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏) ↔ βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
9998ralbidv 3178 . . . . . 6 (𝐹 Fn 𝑋 β†’ (βˆ€π‘§ ∈ 𝑋 βˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ (πΉβ€˜π‘§) = 𝑏) ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
10092, 99bitrd 279 . . . . 5 (𝐹 Fn 𝑋 β†’ (βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏) ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
10111, 100syl 17 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏) ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘£ ∈ (KQβ€˜π½)((πΉβ€˜π‘§) ∈ 𝑣 β†’ (πΉβ€˜π‘€) ∈ 𝑣) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘€))))
10285, 101sylibrd 259 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)) β†’ βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏)))
103 ist1-2 22851 . . . 4 ((KQβ€˜π½) ∈ (TopOnβ€˜ran 𝐹) β†’ ((KQβ€˜π½) ∈ Fre ↔ βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏)))
10433, 103syl 17 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ((KQβ€˜π½) ∈ Fre ↔ βˆ€π‘Ž ∈ ran πΉβˆ€π‘ ∈ ran 𝐹(βˆ€π‘£ ∈ (KQβ€˜π½)(π‘Ž ∈ 𝑣 β†’ 𝑏 ∈ 𝑣) β†’ π‘Ž = 𝑏)))
105102, 104sylibrd 259 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ)) β†’ (KQβ€˜π½) ∈ Fre))
10655, 105impbid 211 1 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ((KQβ€˜π½) ∈ Fre ↔ βˆ€π‘§ ∈ 𝑋 βˆ€π‘€ ∈ 𝑋 (βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ β†’ 𝑀 ∈ π‘œ) β†’ βˆ€π‘œ ∈ 𝐽 (𝑧 ∈ π‘œ ↔ 𝑀 ∈ π‘œ))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433  βˆͺ cuni 4909   ↦ cmpt 5232  β—‘ccnv 5676  dom cdm 5677  ran crn 5678   β€œ cima 5680  Fun wfun 6538   Fn wfn 6539  β€˜cfv 6544  (class class class)co 7409  TopOnctopon 22412   Cn ccn 22728  Frect1 22811  KQckq 23197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-topgen 17389  df-qtop 17453  df-top 22396  df-topon 22413  df-cld 22523  df-cn 22731  df-t1 22818  df-kq 23198
This theorem is referenced by:  r0sep  23252
  Copyright terms: Public domain W3C validator