MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isr0 Structured version   Visualization version   GIF version

Theorem isr0 22481
Description: The property "𝐽 is an R0 space". A space is R0 if any two topologically distinguishable points are separated (there is an open set containing each one and disjoint from the other). Or in contraposition, if every open set which contains 𝑥 also contains 𝑦, so there is no separation, then 𝑥 and 𝑦 are members of the same open sets. We have chosen not to give this definition a name, because it turns out that a space is R0 if and only if its Kolmogorov quotient is T1, so that is what we prove here. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
isr0 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜))))
Distinct variable groups:   𝑤,𝑜,𝑥,𝑦,𝑧,𝐽   𝑜,𝐹,𝑤,𝑧   𝑜,𝑋,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem isr0
Dummy variables 𝑎 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . . . 12 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqid 22472 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
32ad2antrr 726 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
4 cnima 22009 . . . . . . . . . 10 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (𝐹𝑣) ∈ 𝐽)
53, 4sylan 583 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (𝐹𝑣) ∈ 𝐽)
6 eleq2 2821 . . . . . . . . . . 11 (𝑜 = (𝐹𝑣) → (𝑧𝑜𝑧 ∈ (𝐹𝑣)))
7 eleq2 2821 . . . . . . . . . . 11 (𝑜 = (𝐹𝑣) → (𝑤𝑜𝑤 ∈ (𝐹𝑣)))
86, 7imbi12d 348 . . . . . . . . . 10 (𝑜 = (𝐹𝑣) → ((𝑧𝑜𝑤𝑜) ↔ (𝑧 ∈ (𝐹𝑣) → 𝑤 ∈ (𝐹𝑣))))
98rspcv 3519 . . . . . . . . 9 ((𝐹𝑣) ∈ 𝐽 → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → (𝑧 ∈ (𝐹𝑣) → 𝑤 ∈ (𝐹𝑣))))
105, 9syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → (𝑧 ∈ (𝐹𝑣) → 𝑤 ∈ (𝐹𝑣))))
111kqffn 22469 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
1211ad2antrr 726 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → 𝐹 Fn 𝑋)
1312adantr 484 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝐹 Fn 𝑋)
14 fnfun 6432 . . . . . . . . . . 11 (𝐹 Fn 𝑋 → Fun 𝐹)
1513, 14syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → Fun 𝐹)
16 simprl 771 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
1716adantr 484 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑧𝑋)
1813fndmd 6436 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → dom 𝐹 = 𝑋)
1917, 18eleqtrrd 2836 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑧 ∈ dom 𝐹)
20 fvimacnv 6824 . . . . . . . . . 10 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) ∈ 𝑣𝑧 ∈ (𝐹𝑣)))
2115, 19, 20syl2anc 587 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → ((𝐹𝑧) ∈ 𝑣𝑧 ∈ (𝐹𝑣)))
22 simprr 773 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
2322adantr 484 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑤𝑋)
2423, 18eleqtrrd 2836 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → 𝑤 ∈ dom 𝐹)
25 fvimacnv 6824 . . . . . . . . . 10 ((Fun 𝐹𝑤 ∈ dom 𝐹) → ((𝐹𝑤) ∈ 𝑣𝑤 ∈ (𝐹𝑣)))
2615, 24, 25syl2anc 587 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → ((𝐹𝑤) ∈ 𝑣𝑤 ∈ (𝐹𝑣)))
2721, 26imbi12d 348 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) ↔ (𝑧 ∈ (𝐹𝑣) → 𝑤 ∈ (𝐹𝑣))))
2810, 27sylibrd 262 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑣 ∈ (KQ‘𝐽)) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣)))
2928ralrimdva 3101 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣)))
30 simplr 769 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (KQ‘𝐽) ∈ Fre)
31 fnfvelrn 6852 . . . . . . . . 9 ((𝐹 Fn 𝑋𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
3212, 16, 31syl2anc 587 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) ∈ ran 𝐹)
331kqtopon 22471 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
3433ad2antrr 726 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
35 toponuni 21658 . . . . . . . . 9 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ran 𝐹 = (KQ‘𝐽))
3634, 35syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → ran 𝐹 = (KQ‘𝐽))
3732, 36eleqtrd 2835 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) ∈ (KQ‘𝐽))
38 fnfvelrn 6852 . . . . . . . . 9 ((𝐹 Fn 𝑋𝑤𝑋) → (𝐹𝑤) ∈ ran 𝐹)
3912, 22, 38syl2anc 587 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) ∈ ran 𝐹)
4039, 36eleqtrd 2835 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) ∈ (KQ‘𝐽))
41 eqid 2738 . . . . . . . 8 (KQ‘𝐽) = (KQ‘𝐽)
4241t1sep2 22113 . . . . . . 7 (((KQ‘𝐽) ∈ Fre ∧ (𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹𝑤) ∈ (KQ‘𝐽)) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤)))
4330, 37, 40, 42syl3anc 1372 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤)))
4429, 43syld 47 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → (𝐹𝑧) = (𝐹𝑤)))
451kqfeq 22468 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
46 eleq2 2821 . . . . . . . . . 10 (𝑜 = 𝑦 → (𝑧𝑜𝑧𝑦))
47 eleq2 2821 . . . . . . . . . 10 (𝑜 = 𝑦 → (𝑤𝑜𝑤𝑦))
4846, 47bibi12d 349 . . . . . . . . 9 (𝑜 = 𝑦 → ((𝑧𝑜𝑤𝑜) ↔ (𝑧𝑦𝑤𝑦)))
4948cbvralvw 3348 . . . . . . . 8 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦))
5045, 49bitr4di 292 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
51503expb 1121 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
5251adantlr 715 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
5344, 52sylibd 242 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝑧𝑋𝑤𝑋)) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
5453ralrimivva 3103 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
5554ex 416 . 2 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre → ∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜))))
561kqopn 22478 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽) → (𝐹𝑜) ∈ (KQ‘𝐽))
5756ad4ant14 752 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (𝐹𝑜) ∈ (KQ‘𝐽))
58 eleq2 2821 . . . . . . . . . . . 12 (𝑣 = (𝐹𝑜) → ((𝐹𝑧) ∈ 𝑣 ↔ (𝐹𝑧) ∈ (𝐹𝑜)))
59 eleq2 2821 . . . . . . . . . . . 12 (𝑣 = (𝐹𝑜) → ((𝐹𝑤) ∈ 𝑣 ↔ (𝐹𝑤) ∈ (𝐹𝑜)))
6058, 59imbi12d 348 . . . . . . . . . . 11 (𝑣 = (𝐹𝑜) → (((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) ↔ ((𝐹𝑧) ∈ (𝐹𝑜) → (𝐹𝑤) ∈ (𝐹𝑜))))
6160rspcv 3519 . . . . . . . . . 10 ((𝐹𝑜) ∈ (KQ‘𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → ((𝐹𝑧) ∈ (𝐹𝑜) → (𝐹𝑤) ∈ (𝐹𝑜))))
6257, 61syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → ((𝐹𝑧) ∈ (𝐹𝑜) → (𝐹𝑤) ∈ (𝐹𝑜))))
631kqfvima 22474 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽𝑧𝑋) → (𝑧𝑜 ↔ (𝐹𝑧) ∈ (𝐹𝑜)))
64633expa 1119 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽) ∧ 𝑧𝑋) → (𝑧𝑜 ↔ (𝐹𝑧) ∈ (𝐹𝑜)))
6564an32s 652 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑜𝐽) → (𝑧𝑜 ↔ (𝐹𝑧) ∈ (𝐹𝑜)))
6665adantlr 715 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (𝑧𝑜 ↔ (𝐹𝑧) ∈ (𝐹𝑜)))
671kqfvima 22474 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽𝑤𝑋) → (𝑤𝑜 ↔ (𝐹𝑤) ∈ (𝐹𝑜)))
68673expa 1119 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽) ∧ 𝑤𝑋) → (𝑤𝑜 ↔ (𝐹𝑤) ∈ (𝐹𝑜)))
6968an32s 652 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (𝑤𝑜 ↔ (𝐹𝑤) ∈ (𝐹𝑜)))
7069adantllr 719 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (𝑤𝑜 ↔ (𝐹𝑤) ∈ (𝐹𝑜)))
7166, 70imbi12d 348 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → ((𝑧𝑜𝑤𝑜) ↔ ((𝐹𝑧) ∈ (𝐹𝑜) → (𝐹𝑤) ∈ (𝐹𝑜))))
7262, 71sylibrd 262 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) ∧ 𝑜𝐽) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝑧𝑜𝑤𝑜)))
7372ralrimdva 3101 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
741kqfval 22467 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) → (𝐹𝑧) = {𝑦𝐽𝑧𝑦})
7574adantr 484 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → (𝐹𝑧) = {𝑦𝐽𝑧𝑦})
761kqfval 22467 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝑋) → (𝐹𝑤) = {𝑦𝐽𝑤𝑦})
7776adantlr 715 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → (𝐹𝑤) = {𝑦𝐽𝑤𝑦})
7875, 77eqeq12d 2754 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ {𝑦𝐽𝑧𝑦} = {𝑦𝐽𝑤𝑦}))
79 rabbi 3285 . . . . . . . . . 10 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) ↔ {𝑦𝐽𝑧𝑦} = {𝑦𝐽𝑤𝑦})
8049, 79bitri 278 . . . . . . . . 9 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) ↔ {𝑦𝐽𝑧𝑦} = {𝑦𝐽𝑤𝑦})
8178, 80bitr4di 292 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)))
8281biimprd 251 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → (𝐹𝑧) = (𝐹𝑤)))
8373, 82imim12d 81 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
8483ralimdva 3091 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋) → (∀𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)) → ∀𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
8584ralimdva 3091 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)) → ∀𝑧𝑋𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
86 eleq1 2820 . . . . . . . . . . 11 (𝑎 = (𝐹𝑧) → (𝑎𝑣 ↔ (𝐹𝑧) ∈ 𝑣))
8786imbi1d 345 . . . . . . . . . 10 (𝑎 = (𝐹𝑧) → ((𝑎𝑣𝑏𝑣) ↔ ((𝐹𝑧) ∈ 𝑣𝑏𝑣)))
8887ralbidv 3109 . . . . . . . . 9 (𝑎 = (𝐹𝑧) → (∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) ↔ ∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣)))
89 eqeq1 2742 . . . . . . . . 9 (𝑎 = (𝐹𝑧) → (𝑎 = 𝑏 ↔ (𝐹𝑧) = 𝑏))
9088, 89imbi12d 348 . . . . . . . 8 (𝑎 = (𝐹𝑧) → ((∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏) ↔ (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏)))
9190ralbidv 3109 . . . . . . 7 (𝑎 = (𝐹𝑧) → (∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏) ↔ ∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏)))
9291ralrn 6858 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧𝑋𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏)))
93 eleq1 2820 . . . . . . . . . . 11 (𝑏 = (𝐹𝑤) → (𝑏𝑣 ↔ (𝐹𝑤) ∈ 𝑣))
9493imbi2d 344 . . . . . . . . . 10 (𝑏 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑣𝑏𝑣) ↔ ((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣)))
9594ralbidv 3109 . . . . . . . . 9 (𝑏 = (𝐹𝑤) → (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) ↔ ∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣)))
96 eqeq2 2750 . . . . . . . . 9 (𝑏 = (𝐹𝑤) → ((𝐹𝑧) = 𝑏 ↔ (𝐹𝑧) = (𝐹𝑤)))
9795, 96imbi12d 348 . . . . . . . 8 (𝑏 = (𝐹𝑤) → ((∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏) ↔ (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
9897ralrn 6858 . . . . . . 7 (𝐹 Fn 𝑋 → (∀𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏) ↔ ∀𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
9998ralbidv 3109 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑧𝑋𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣𝑏𝑣) → (𝐹𝑧) = 𝑏) ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
10092, 99bitrd 282 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
10111, 100syl 17 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏) ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑣 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑣 → (𝐹𝑤) ∈ 𝑣) → (𝐹𝑧) = (𝐹𝑤))))
10285, 101sylibrd 262 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)) → ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏)))
103 ist1-2 22091 . . . 4 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏)))
10433, 103syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(∀𝑣 ∈ (KQ‘𝐽)(𝑎𝑣𝑏𝑣) → 𝑎 = 𝑏)))
105102, 104sylibrd 262 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜)) → (KQ‘𝐽) ∈ Fre))
10655, 105impbid 215 1 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑜𝐽 (𝑧𝑜𝑤𝑜) → ∀𝑜𝐽 (𝑧𝑜𝑤𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wral 3053  {crab 3057   cuni 4793  cmpt 5107  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  Fun wfun 6327   Fn wfn 6328  cfv 6333  (class class class)co 7164  TopOnctopon 21654   Cn ccn 21968  Frect1 22051  KQckq 22437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-map 8432  df-topgen 16813  df-qtop 16876  df-top 21638  df-topon 21655  df-cld 21763  df-cn 21971  df-t1 22058  df-kq 22438
This theorem is referenced by:  r0sep  22492
  Copyright terms: Public domain W3C validator