MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgen2ss Structured version   Visualization version   GIF version

Theorem kgen2ss 23449
Description: The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgen2ss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾))

Proof of Theorem kgen2ss
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽 ∈ (TopOn‘𝑋))
2 elpwi 4573 . . . . . . . . 9 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
3 resttopon 23055 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
41, 2, 3syl2an 596 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
5 simp2 1137 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾 ∈ (TopOn‘𝑋))
6 resttopon 23055 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐾t 𝑘) ∈ (TopOn‘𝑘))
75, 2, 6syl2an 596 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐾t 𝑘) ∈ (TopOn‘𝑘))
8 toponuni 22808 . . . . . . . . . 10 ((𝐾t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 = (𝐾t 𝑘))
97, 8syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 = (𝐾t 𝑘))
109fveq2d 6865 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (TopOn‘𝑘) = (TopOn‘ (𝐾t 𝑘)))
114, 10eleqtrd 2831 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)))
12 simpl2 1193 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑋))
13 topontop 22807 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
1412, 13syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ Top)
15 simpl3 1194 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐽𝐾)
16 ssrest 23070 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐽𝐾) → (𝐽t 𝑘) ⊆ (𝐾t 𝑘))
1714, 15, 16syl2anc 584 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ⊆ (𝐾t 𝑘))
18 eqid 2730 . . . . . . . . . 10 (𝐾t 𝑘) = (𝐾t 𝑘)
1918sscmp 23299 . . . . . . . . 9 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐾t 𝑘) ∈ Comp ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘)) → (𝐽t 𝑘) ∈ Comp)
20193com23 1126 . . . . . . . 8 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘) ∧ (𝐾t 𝑘) ∈ Comp) → (𝐽t 𝑘) ∈ Comp)
21203expia 1121 . . . . . . 7 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘)) → ((𝐾t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Comp))
2211, 17, 21syl2anc 584 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐾t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Comp))
2317sseld 3948 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝑥𝑘) ∈ (𝐽t 𝑘) → (𝑥𝑘) ∈ (𝐾t 𝑘)))
2422, 23imim12d 81 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → ((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘))))
2524ralimdva 3146 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘))))
2625anim2d 612 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → ((𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
27 elkgen 23430 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
28273ad2ant1 1133 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
29 elkgen 23430 . . . 4 (𝐾 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
30293ad2ant2 1134 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
3126, 28, 303imtr4d 294 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐾)))
3231ssrdv 3955 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  TopOnctopon 22804  Compccmp 23280  𝑘Genckgen 23427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-kgen 23428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator