| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1137 | . . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 2 |  | elpwi 4607 | . . . . . . . . 9
⊢ (𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋) | 
| 3 |  | resttopon 23169 | . . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ⊆ 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) | 
| 4 | 1, 2, 3 | syl2an 596 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) | 
| 5 |  | simp2 1138 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ (TopOn‘𝑋)) | 
| 6 |  | resttopon 23169 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑘 ⊆ 𝑋) → (𝐾 ↾t 𝑘) ∈ (TopOn‘𝑘)) | 
| 7 | 5, 2, 6 | syl2an 596 | . . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐾 ↾t 𝑘) ∈ (TopOn‘𝑘)) | 
| 8 |  | toponuni 22920 | . . . . . . . . . 10
⊢ ((𝐾 ↾t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 = ∪ (𝐾 ↾t 𝑘)) | 
| 9 | 7, 8 | syl 17 | . . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 = ∪ (𝐾 ↾t 𝑘)) | 
| 10 | 9 | fveq2d 6910 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (TopOn‘𝑘) = (TopOn‘∪
(𝐾 ↾t
𝑘))) | 
| 11 | 4, 10 | eleqtrd 2843 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘∪ (𝐾
↾t 𝑘))) | 
| 12 |  | simpl2 1193 | . . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑋)) | 
| 13 |  | topontop 22919 | . . . . . . . . 9
⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top) | 
| 14 | 12, 13 | syl 17 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ Top) | 
| 15 |  | simpl3 1194 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐽 ⊆ 𝐾) | 
| 16 |  | ssrest 23184 | . . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝑘) ⊆ (𝐾 ↾t 𝑘)) | 
| 17 | 14, 15, 16 | syl2anc 584 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽 ↾t 𝑘) ⊆ (𝐾 ↾t 𝑘)) | 
| 18 |  | eqid 2737 | . . . . . . . . . 10
⊢ ∪ (𝐾
↾t 𝑘) =
∪ (𝐾 ↾t 𝑘) | 
| 19 | 18 | sscmp 23413 | . . . . . . . . 9
⊢ (((𝐽 ↾t 𝑘) ∈ (TopOn‘∪ (𝐾
↾t 𝑘))
∧ (𝐾
↾t 𝑘)
∈ Comp ∧ (𝐽
↾t 𝑘)
⊆ (𝐾
↾t 𝑘))
→ (𝐽
↾t 𝑘)
∈ Comp) | 
| 20 | 19 | 3com23 1127 | . . . . . . . 8
⊢ (((𝐽 ↾t 𝑘) ∈ (TopOn‘∪ (𝐾
↾t 𝑘))
∧ (𝐽
↾t 𝑘)
⊆ (𝐾
↾t 𝑘)
∧ (𝐾
↾t 𝑘)
∈ Comp) → (𝐽
↾t 𝑘)
∈ Comp) | 
| 21 | 20 | 3expia 1122 | . . . . . . 7
⊢ (((𝐽 ↾t 𝑘) ∈ (TopOn‘∪ (𝐾
↾t 𝑘))
∧ (𝐽
↾t 𝑘)
⊆ (𝐾
↾t 𝑘))
→ ((𝐾
↾t 𝑘)
∈ Comp → (𝐽
↾t 𝑘)
∈ Comp)) | 
| 22 | 11, 17, 21 | syl2anc 584 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐾 ↾t 𝑘) ∈ Comp → (𝐽 ↾t 𝑘) ∈ Comp)) | 
| 23 | 17 | sseld 3982 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘) → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘))) | 
| 24 | 22, 23 | imim12d 81 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → ((𝐾 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘)))) | 
| 25 | 24 | ralimdva 3167 | . . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → ∀𝑘 ∈ 𝒫 𝑋((𝐾 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘)))) | 
| 26 | 25 | anim2d 612 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → ((𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) → (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘))))) | 
| 27 |  | elkgen 23544 | . . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | 
| 28 | 27 | 3ad2ant1 1134 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | 
| 29 |  | elkgen 23544 | . . . 4
⊢ (𝐾 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘))))) | 
| 30 | 29 | 3ad2ant2 1135 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘))))) | 
| 31 | 26, 28, 30 | 3imtr4d 294 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐾))) | 
| 32 | 31 | ssrdv 3989 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑘Gen‘𝐽) ⊆
(𝑘Gen‘𝐾)) |