MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgen2ss Structured version   Visualization version   GIF version

Theorem kgen2ss 23563
Description: The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgen2ss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾))

Proof of Theorem kgen2ss
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽 ∈ (TopOn‘𝑋))
2 elpwi 4607 . . . . . . . . 9 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
3 resttopon 23169 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
41, 2, 3syl2an 596 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
5 simp2 1138 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾 ∈ (TopOn‘𝑋))
6 resttopon 23169 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐾t 𝑘) ∈ (TopOn‘𝑘))
75, 2, 6syl2an 596 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐾t 𝑘) ∈ (TopOn‘𝑘))
8 toponuni 22920 . . . . . . . . . 10 ((𝐾t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 = (𝐾t 𝑘))
97, 8syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 = (𝐾t 𝑘))
109fveq2d 6910 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (TopOn‘𝑘) = (TopOn‘ (𝐾t 𝑘)))
114, 10eleqtrd 2843 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)))
12 simpl2 1193 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑋))
13 topontop 22919 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
1412, 13syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ Top)
15 simpl3 1194 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐽𝐾)
16 ssrest 23184 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐽𝐾) → (𝐽t 𝑘) ⊆ (𝐾t 𝑘))
1714, 15, 16syl2anc 584 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ⊆ (𝐾t 𝑘))
18 eqid 2737 . . . . . . . . . 10 (𝐾t 𝑘) = (𝐾t 𝑘)
1918sscmp 23413 . . . . . . . . 9 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐾t 𝑘) ∈ Comp ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘)) → (𝐽t 𝑘) ∈ Comp)
20193com23 1127 . . . . . . . 8 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘) ∧ (𝐾t 𝑘) ∈ Comp) → (𝐽t 𝑘) ∈ Comp)
21203expia 1122 . . . . . . 7 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘)) → ((𝐾t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Comp))
2211, 17, 21syl2anc 584 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐾t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Comp))
2317sseld 3982 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝑥𝑘) ∈ (𝐽t 𝑘) → (𝑥𝑘) ∈ (𝐾t 𝑘)))
2422, 23imim12d 81 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → ((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘))))
2524ralimdva 3167 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘))))
2625anim2d 612 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → ((𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
27 elkgen 23544 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
28273ad2ant1 1134 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
29 elkgen 23544 . . . 4 (𝐾 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
30293ad2ant2 1135 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
3126, 28, 303imtr4d 294 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐾)))
3231ssrdv 3989 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cin 3950  wss 3951  𝒫 cpw 4600   cuni 4907  cfv 6561  (class class class)co 7431  t crest 17465  Topctop 22899  TopOnctopon 22916  Compccmp 23394  𝑘Genckgen 23541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-kgen 23542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator