MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgen2ss Structured version   Visualization version   GIF version

Theorem kgen2ss 22706
Description: The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgen2ss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾))

Proof of Theorem kgen2ss
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽 ∈ (TopOn‘𝑋))
2 elpwi 4542 . . . . . . . . 9 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
3 resttopon 22312 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
41, 2, 3syl2an 596 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
5 simp2 1136 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾 ∈ (TopOn‘𝑋))
6 resttopon 22312 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐾t 𝑘) ∈ (TopOn‘𝑘))
75, 2, 6syl2an 596 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐾t 𝑘) ∈ (TopOn‘𝑘))
8 toponuni 22063 . . . . . . . . . 10 ((𝐾t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 = (𝐾t 𝑘))
97, 8syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 = (𝐾t 𝑘))
109fveq2d 6778 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (TopOn‘𝑘) = (TopOn‘ (𝐾t 𝑘)))
114, 10eleqtrd 2841 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)))
12 simpl2 1191 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑋))
13 topontop 22062 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
1412, 13syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ Top)
15 simpl3 1192 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐽𝐾)
16 ssrest 22327 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐽𝐾) → (𝐽t 𝑘) ⊆ (𝐾t 𝑘))
1714, 15, 16syl2anc 584 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ⊆ (𝐾t 𝑘))
18 eqid 2738 . . . . . . . . . 10 (𝐾t 𝑘) = (𝐾t 𝑘)
1918sscmp 22556 . . . . . . . . 9 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐾t 𝑘) ∈ Comp ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘)) → (𝐽t 𝑘) ∈ Comp)
20193com23 1125 . . . . . . . 8 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘) ∧ (𝐾t 𝑘) ∈ Comp) → (𝐽t 𝑘) ∈ Comp)
21203expia 1120 . . . . . . 7 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘)) → ((𝐾t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Comp))
2211, 17, 21syl2anc 584 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐾t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Comp))
2317sseld 3920 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝑥𝑘) ∈ (𝐽t 𝑘) → (𝑥𝑘) ∈ (𝐾t 𝑘)))
2422, 23imim12d 81 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → ((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘))))
2524ralimdva 3108 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘))))
2625anim2d 612 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → ((𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
27 elkgen 22687 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
28273ad2ant1 1132 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
29 elkgen 22687 . . . 4 (𝐾 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
30293ad2ant2 1133 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
3126, 28, 303imtr4d 294 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐾)))
3231ssrdv 3927 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  cfv 6433  (class class class)co 7275  t crest 17131  Topctop 22042  TopOnctopon 22059  Compccmp 22537  𝑘Genckgen 22684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-kgen 22685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator