Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | elpwi 4539 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋) |
3 | | resttopon 22220 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ⊆ 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
4 | 1, 2, 3 | syl2an 595 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
5 | | simp2 1135 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ (TopOn‘𝑋)) |
6 | | resttopon 22220 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑘 ⊆ 𝑋) → (𝐾 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
7 | 5, 2, 6 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐾 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
8 | | toponuni 21971 |
. . . . . . . . . 10
⊢ ((𝐾 ↾t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 = ∪ (𝐾 ↾t 𝑘)) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 = ∪ (𝐾 ↾t 𝑘)) |
10 | 9 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (TopOn‘𝑘) = (TopOn‘∪
(𝐾 ↾t
𝑘))) |
11 | 4, 10 | eleqtrd 2841 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘∪ (𝐾
↾t 𝑘))) |
12 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑋)) |
13 | | topontop 21970 |
. . . . . . . . 9
⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ Top) |
15 | | simpl3 1191 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐽 ⊆ 𝐾) |
16 | | ssrest 22235 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝑘) ⊆ (𝐾 ↾t 𝑘)) |
17 | 14, 15, 16 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽 ↾t 𝑘) ⊆ (𝐾 ↾t 𝑘)) |
18 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ (𝐾
↾t 𝑘) =
∪ (𝐾 ↾t 𝑘) |
19 | 18 | sscmp 22464 |
. . . . . . . . 9
⊢ (((𝐽 ↾t 𝑘) ∈ (TopOn‘∪ (𝐾
↾t 𝑘))
∧ (𝐾
↾t 𝑘)
∈ Comp ∧ (𝐽
↾t 𝑘)
⊆ (𝐾
↾t 𝑘))
→ (𝐽
↾t 𝑘)
∈ Comp) |
20 | 19 | 3com23 1124 |
. . . . . . . 8
⊢ (((𝐽 ↾t 𝑘) ∈ (TopOn‘∪ (𝐾
↾t 𝑘))
∧ (𝐽
↾t 𝑘)
⊆ (𝐾
↾t 𝑘)
∧ (𝐾
↾t 𝑘)
∈ Comp) → (𝐽
↾t 𝑘)
∈ Comp) |
21 | 20 | 3expia 1119 |
. . . . . . 7
⊢ (((𝐽 ↾t 𝑘) ∈ (TopOn‘∪ (𝐾
↾t 𝑘))
∧ (𝐽
↾t 𝑘)
⊆ (𝐾
↾t 𝑘))
→ ((𝐾
↾t 𝑘)
∈ Comp → (𝐽
↾t 𝑘)
∈ Comp)) |
22 | 11, 17, 21 | syl2anc 583 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐾 ↾t 𝑘) ∈ Comp → (𝐽 ↾t 𝑘) ∈ Comp)) |
23 | 17 | sseld 3916 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘) → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘))) |
24 | 22, 23 | imim12d 81 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → ((𝐾 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘)))) |
25 | 24 | ralimdva 3102 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → ∀𝑘 ∈ 𝒫 𝑋((𝐾 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘)))) |
26 | 25 | anim2d 611 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → ((𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) → (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘))))) |
27 | | elkgen 22595 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
28 | 27 | 3ad2ant1 1131 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
29 | | elkgen 22595 |
. . . 4
⊢ (𝐾 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘))))) |
30 | 29 | 3ad2ant2 1132 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐾 ↾t 𝑘))))) |
31 | 26, 28, 30 | 3imtr4d 293 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐾))) |
32 | 31 | ssrdv 3923 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑘Gen‘𝐽) ⊆
(𝑘Gen‘𝐾)) |