MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmhmcn Structured version   Visualization version   GIF version

Theorem nmhmcn 24189
Description: A linear operator over a normed subcomplex module is bounded iff it is continuous. (Contributed by Mario Carneiro, 22-Oct-2015.)
Hypotheses
Ref Expression
nmhmcn.j 𝐽 = (TopOpen‘𝑆)
nmhmcn.k 𝐾 = (TopOpen‘𝑇)
nmhmcn.g 𝐺 = (Scalar‘𝑆)
nmhmcn.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
nmhmcn ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾))))

Proof of Theorem nmhmcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinel1 4125 . . . 4 (𝑆 ∈ (NrmMod ∩ ℂMod) → 𝑆 ∈ NrmMod)
2 elinel1 4125 . . . 4 (𝑇 ∈ (NrmMod ∩ ℂMod) → 𝑇 ∈ NrmMod)
3 isnmhm 23816 . . . . 5 (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
43baib 535 . . . 4 ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
51, 2, 4syl2an 595 . . 3 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod)) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
653adant3 1130 . 2 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
7 nmhmcn.j . . . . 5 𝐽 = (TopOpen‘𝑆)
8 nmhmcn.k . . . . 5 𝐾 = (TopOpen‘𝑇)
97, 8nghmcn 23815 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))
10 simpll1 1210 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ (NrmMod ∩ ℂMod))
1110elin1d 4128 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ NrmMod)
12 nlmngp 23747 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
13 ngpms 23662 . . . . . . . . 9 (𝑆 ∈ NrmGrp → 𝑆 ∈ MetSp)
1411, 12, 133syl 18 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ MetSp)
15 msxms 23515 . . . . . . . 8 (𝑆 ∈ MetSp → 𝑆 ∈ ∞MetSp)
16 eqid 2738 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
17 eqid 2738 . . . . . . . . 9 ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) = ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))
1816, 17xmsxmet 23517 . . . . . . . 8 (𝑆 ∈ ∞MetSp → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
1914, 15, 183syl 18 . . . . . . 7 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
20 simpr 484 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
21 simpll2 1211 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ (NrmMod ∩ ℂMod))
2221elin1d 4128 . . . . . . . . . . . . 13 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ NrmMod)
23 nlmngp 23747 . . . . . . . . . . . . 13 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
24 ngpms 23662 . . . . . . . . . . . . 13 (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp)
2522, 23, 243syl 18 . . . . . . . . . . . 12 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ MetSp)
26 msxms 23515 . . . . . . . . . . . 12 (𝑇 ∈ MetSp → 𝑇 ∈ ∞MetSp)
27 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
28 eqid 2738 . . . . . . . . . . . . 13 ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))
2927, 28xmsxmet 23517 . . . . . . . . . . . 12 (𝑇 ∈ ∞MetSp → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
3025, 26, 293syl 18 . . . . . . . . . . 11 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
31 nlmlmod 23748 . . . . . . . . . . . 12 (𝑇 ∈ NrmMod → 𝑇 ∈ LMod)
32 eqid 2738 . . . . . . . . . . . . 13 (0g𝑇) = (0g𝑇)
3327, 32lmod0vcl 20067 . . . . . . . . . . . 12 (𝑇 ∈ LMod → (0g𝑇) ∈ (Base‘𝑇))
3422, 31, 333syl 18 . . . . . . . . . . 11 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑇) ∈ (Base‘𝑇))
35 1rp 12663 . . . . . . . . . . . 12 1 ∈ ℝ+
36 rpxr 12668 . . . . . . . . . . . 12 (1 ∈ ℝ+ → 1 ∈ ℝ*)
3735, 36mp1i 13 . . . . . . . . . . 11 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 1 ∈ ℝ*)
38 eqid 2738 . . . . . . . . . . . 12 (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))
3938blopn 23562 . . . . . . . . . . 11 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (0g𝑇) ∈ (Base‘𝑇) ∧ 1 ∈ ℝ*) → ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
4030, 34, 37, 39syl3anc 1369 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
418, 27, 28mstopn 23513 . . . . . . . . . . 11 (𝑇 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
4222, 23, 24, 414syl 19 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
4340, 42eleqtrrd 2842 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ 𝐾)
44 cnima 22324 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ 𝐾) → (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ 𝐽)
4520, 43, 44syl2anc 583 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ 𝐽)
467, 16, 17mstopn 23513 . . . . . . . . 9 (𝑆 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
4711, 12, 13, 464syl 19 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
4845, 47eleqtrd 2841 . . . . . . 7 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
49 nlmlmod 23748 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ LMod)
50 eqid 2738 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
5116, 50lmod0vcl 20067 . . . . . . . . 9 (𝑆 ∈ LMod → (0g𝑆) ∈ (Base‘𝑆))
5211, 49, 513syl 18 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑆) ∈ (Base‘𝑆))
53 lmghm 20208 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5453ad2antlr 723 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5550, 32ghmid 18755 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
5654, 55syl 17 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹‘(0g𝑆)) = (0g𝑇))
5735a1i 11 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 1 ∈ ℝ+)
58 blcntr 23474 . . . . . . . . . 10 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (0g𝑇) ∈ (Base‘𝑇) ∧ 1 ∈ ℝ+) → (0g𝑇) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))
5930, 34, 57, 58syl3anc 1369 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑇) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))
6056, 59eqeltrd 2839 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹‘(0g𝑆)) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))
6116, 27lmhmf 20211 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
6261ad2antlr 723 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
63 ffn 6584 . . . . . . . . 9 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
64 elpreima 6917 . . . . . . . . 9 (𝐹 Fn (Base‘𝑆) → ((0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
6562, 63, 643syl 18 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
6652, 60, 65mpbir2and 709 . . . . . . 7 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))
67 eqid 2738 . . . . . . . 8 (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))
6867mopni2 23555 . . . . . . 7 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) ∧ (0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))) → ∃𝑥 ∈ ℝ+ ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))
6919, 48, 66, 68syl3anc 1369 . . . . . 6 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∃𝑥 ∈ ℝ+ ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))
70 simpl1 1189 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ (NrmMod ∩ ℂMod))
7170elin1d 4128 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ NrmMod)
7271, 12syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ NrmGrp)
7372adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ NrmGrp)
7473ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ NrmGrp)
75 ngpgrp 23661 . . . . . . . . . . . . . . . 16 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
7674, 75syl 17 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ Grp)
77 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
78 eqid 2738 . . . . . . . . . . . . . . . 16 (norm‘𝑆) = (norm‘𝑆)
79 eqid 2738 . . . . . . . . . . . . . . . 16 (dist‘𝑆) = (dist‘𝑆)
8078, 16, 50, 79, 17nmval2 23654 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑦) = (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)))
8176, 77, 80syl2anc 583 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑦) = (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)))
8219ad2antrr 722 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
8352ad2antrr 722 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (0g𝑆) ∈ (Base‘𝑆))
84 xmetsym 23408 . . . . . . . . . . . . . . 15 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆) ∧ (0g𝑆) ∈ (Base‘𝑆)) → (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)) = ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦))
8582, 77, 83, 84syl3anc 1369 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)) = ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦))
8681, 85eqtrd 2778 . . . . . . . . . . . . 13 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑦) = ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦))
8786breq1d 5080 . . . . . . . . . . . 12 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑆)‘𝑦) < 𝑥 ↔ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥))
8887biimpd 228 . . . . . . . . . . 11 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑆)‘𝑦) < 𝑥 → ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥))
8962ad2antrr 722 . . . . . . . . . . . . 13 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
90 elpreima 6917 . . . . . . . . . . . . 13 (𝐹 Fn (Base‘𝑆) → (𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
9189, 63, 903syl 18 . . . . . . . . . . . 12 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
9230ad2antrr 722 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
9334ad2antrr 722 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (0g𝑇) ∈ (Base‘𝑇))
9435, 36mp1i 13 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 1 ∈ ℝ*)
95 elbl 23449 . . . . . . . . . . . . . . 15 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (0g𝑇) ∈ (Base‘𝑇) ∧ 1 ∈ ℝ*) → ((𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ↔ ((𝐹𝑦) ∈ (Base‘𝑇) ∧ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1)))
9692, 93, 94, 95syl3anc 1369 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ↔ ((𝐹𝑦) ∈ (Base‘𝑇) ∧ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1)))
97 simpl2 1190 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ (NrmMod ∩ ℂMod))
9897elin1d 4128 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ NrmMod)
9998, 23syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ NrmGrp)
10099adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ NrmGrp)
101100ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑇 ∈ NrmGrp)
102 simplr 765 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
103102adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (𝑆 LMHom 𝑇))
104103, 61syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
105104ffvelrnda 6943 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑦) ∈ (Base‘𝑇))
106 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (norm‘𝑇) = (norm‘𝑇)
10727, 106nmcl 23678 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑦)) ∈ ℝ)
108101, 105, 107syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑦)) ∈ ℝ)
109 1re 10906 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
110 ltle 10994 . . . . . . . . . . . . . . . . 17 ((((norm‘𝑇)‘(𝐹𝑦)) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘𝑇)‘(𝐹𝑦)) < 1 → ((norm‘𝑇)‘(𝐹𝑦)) ≤ 1))
111108, 109, 110sylancl 585 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑇)‘(𝐹𝑦)) < 1 → ((norm‘𝑇)‘(𝐹𝑦)) ≤ 1))
112 ngpgrp 23661 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
113101, 112syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑇 ∈ Grp)
114 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (dist‘𝑇) = (dist‘𝑇)
115106, 27, 32, 114, 28nmval2 23654 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Grp ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑦)) = ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)))
116113, 105, 115syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑦)) = ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)))
117 xmetsym 23408 . . . . . . . . . . . . . . . . . . 19 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (𝐹𝑦) ∈ (Base‘𝑇) ∧ (0g𝑇) ∈ (Base‘𝑇)) → ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)) = ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)))
11892, 105, 93, 117syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)) = ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)))
119116, 118eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑦)) = ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)))
120119breq1d 5080 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑇)‘(𝐹𝑦)) < 1 ↔ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1))
121 1red 10907 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 1 ∈ ℝ)
122 simplr 765 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ ℝ+)
123108, 121, 122lediv1d 12747 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑇)‘(𝐹𝑦)) ≤ 1 ↔ (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
124111, 120, 1233imtr3d 292 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
125124adantld 490 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝐹𝑦) ∈ (Base‘𝑇) ∧ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
12696, 125sylbid 239 . . . . . . . . . . . . 13 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
127126adantld 490 . . . . . . . . . . . 12 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
12891, 127sylbid 239 . . . . . . . . . . 11 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
12988, 128imim12d 81 . . . . . . . . . 10 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))) → (((norm‘𝑆)‘𝑦) < 𝑥 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥))))
130129ralimdva 3102 . . . . . . . . 9 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (∀𝑦 ∈ (Base‘𝑆)(((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))) → ∀𝑦 ∈ (Base‘𝑆)(((norm‘𝑆)‘𝑦) < 𝑥 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥))))
131 rpxr 12668 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
132 blval 23447 . . . . . . . . . . . 12 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ (0g𝑆) ∈ (Base‘𝑆) ∧ 𝑥 ∈ ℝ*) → ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) = {𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥})
13319, 52, 131, 132syl2an3an 1420 . . . . . . . . . . 11 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) = {𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥})
134133sseq1d 3948 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ {𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥} ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
135 rabss 4001 . . . . . . . . . 10 ({𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥} ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ∀𝑦 ∈ (Base‘𝑆)(((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
136134, 135bitrdi 286 . . . . . . . . 9 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ∀𝑦 ∈ (Base‘𝑆)(((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))))
137 eqid 2738 . . . . . . . . . 10 (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇)
138 nmhmcn.g . . . . . . . . . 10 𝐺 = (Scalar‘𝑆)
139 nmhmcn.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
14010adantr 480 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝑆 ∈ (NrmMod ∩ ℂMod))
14121adantr 480 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝑇 ∈ (NrmMod ∩ ℂMod))
142 rpreccl 12685 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
143142adantl 481 . . . . . . . . . . 11 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
144143rpxrd 12702 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ*)
145 simpr 484 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
146 simpl3 1191 . . . . . . . . . . 11 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → ℚ ⊆ 𝐵)
147146ad2antrr 722 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → ℚ ⊆ 𝐵)
148137, 16, 78, 106, 138, 139, 140, 141, 103, 144, 145, 147nmoleub2b 24187 . . . . . . . . 9 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥) ↔ ∀𝑦 ∈ (Base‘𝑆)(((norm‘𝑆)‘𝑦) < 𝑥 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥))))
149130, 136, 1483imtr4d 293 . . . . . . . 8 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → ((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥)))
15073, 100, 543jca 1126 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
151142rpred 12701 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
152137bddnghm 23796 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ ((1 / 𝑥) ∈ ℝ ∧ ((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥))) → 𝐹 ∈ (𝑆 NGHom 𝑇))
153152expr 456 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (1 / 𝑥) ∈ ℝ) → (((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
154150, 151, 153syl2an 595 . . . . . . . 8 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
155149, 154syld 47 . . . . . . 7 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
156155rexlimdva 3212 . . . . . 6 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (∃𝑥 ∈ ℝ+ ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
15769, 156mpd 15 . . . . 5 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝑆 NGHom 𝑇))
158157ex 412 . . . 4 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
1599, 158impbid2 225 . . 3 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ 𝐹 ∈ (𝐽 Cn 𝐾)))
160159pm5.32da 578 . 2 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾))))
1616, 160bitrd 278 1 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883   class class class wbr 5070   × cxp 5578  ccnv 5579  cres 5582  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  cq 12617  +crp 12659  Basecbs 16840  Scalarcsca 16891  distcds 16897  TopOpenctopn 17049  0gc0g 17067  Grpcgrp 18492   GrpHom cghm 18746  LModclmod 20038   LMHom clmhm 20196  ∞Metcxmet 20495  ballcbl 20497  MetOpencmopn 20500   Cn ccn 22283  ∞MetSpcxms 23378  MetSpcms 23379  normcnm 23638  NrmGrpcngp 23639  NrmModcnlm 23642   normOp cnmo 23775   NGHom cnghm 23776   NMHom cnmhm 23777  ℂModcclm 24131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cmn 19303  df-mgp 19636  df-ring 19700  df-cring 19701  df-subrg 19937  df-lmod 20040  df-lmhm 20199  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-cnp 22287  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-nlm 23648  df-nmo 23778  df-nghm 23779  df-nmhm 23780  df-clm 24132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator