MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmhmcn Structured version   Visualization version   GIF version

Theorem nmhmcn 25018
Description: A linear operator over a normed subcomplex module is bounded iff it is continuous. (Contributed by Mario Carneiro, 22-Oct-2015.)
Hypotheses
Ref Expression
nmhmcn.j 𝐽 = (TopOpen‘𝑆)
nmhmcn.k 𝐾 = (TopOpen‘𝑇)
nmhmcn.g 𝐺 = (Scalar‘𝑆)
nmhmcn.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
nmhmcn ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾))))

Proof of Theorem nmhmcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinel1 4152 . . . 4 (𝑆 ∈ (NrmMod ∩ ℂMod) → 𝑆 ∈ NrmMod)
2 elinel1 4152 . . . 4 (𝑇 ∈ (NrmMod ∩ ℂMod) → 𝑇 ∈ NrmMod)
3 isnmhm 24632 . . . . 5 (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
43baib 535 . . . 4 ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
51, 2, 4syl2an 596 . . 3 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod)) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
653adant3 1132 . 2 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
7 nmhmcn.j . . . . 5 𝐽 = (TopOpen‘𝑆)
8 nmhmcn.k . . . . 5 𝐾 = (TopOpen‘𝑇)
97, 8nghmcn 24631 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))
10 simpll1 1213 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ (NrmMod ∩ ℂMod))
1110elin1d 4155 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ NrmMod)
12 nlmngp 24563 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
13 ngpms 24486 . . . . . . . . 9 (𝑆 ∈ NrmGrp → 𝑆 ∈ MetSp)
1411, 12, 133syl 18 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ MetSp)
15 msxms 24340 . . . . . . . 8 (𝑆 ∈ MetSp → 𝑆 ∈ ∞MetSp)
16 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
17 eqid 2729 . . . . . . . . 9 ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) = ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))
1816, 17xmsxmet 24342 . . . . . . . 8 (𝑆 ∈ ∞MetSp → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
1914, 15, 183syl 18 . . . . . . 7 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
20 simpr 484 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
21 simpll2 1214 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ (NrmMod ∩ ℂMod))
2221elin1d 4155 . . . . . . . . . . . . 13 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ NrmMod)
23 nlmngp 24563 . . . . . . . . . . . . 13 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
24 ngpms 24486 . . . . . . . . . . . . 13 (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp)
2522, 23, 243syl 18 . . . . . . . . . . . 12 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ MetSp)
26 msxms 24340 . . . . . . . . . . . 12 (𝑇 ∈ MetSp → 𝑇 ∈ ∞MetSp)
27 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
28 eqid 2729 . . . . . . . . . . . . 13 ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))
2927, 28xmsxmet 24342 . . . . . . . . . . . 12 (𝑇 ∈ ∞MetSp → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
3025, 26, 293syl 18 . . . . . . . . . . 11 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
31 nlmlmod 24564 . . . . . . . . . . . 12 (𝑇 ∈ NrmMod → 𝑇 ∈ LMod)
32 eqid 2729 . . . . . . . . . . . . 13 (0g𝑇) = (0g𝑇)
3327, 32lmod0vcl 20794 . . . . . . . . . . . 12 (𝑇 ∈ LMod → (0g𝑇) ∈ (Base‘𝑇))
3422, 31, 333syl 18 . . . . . . . . . . 11 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑇) ∈ (Base‘𝑇))
35 1rp 12897 . . . . . . . . . . . 12 1 ∈ ℝ+
36 rpxr 12903 . . . . . . . . . . . 12 (1 ∈ ℝ+ → 1 ∈ ℝ*)
3735, 36mp1i 13 . . . . . . . . . . 11 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 1 ∈ ℝ*)
38 eqid 2729 . . . . . . . . . . . 12 (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))
3938blopn 24386 . . . . . . . . . . 11 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (0g𝑇) ∈ (Base‘𝑇) ∧ 1 ∈ ℝ*) → ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
4030, 34, 37, 39syl3anc 1373 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
418, 27, 28mstopn 24338 . . . . . . . . . . 11 (𝑇 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
4222, 23, 24, 414syl 19 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
4340, 42eleqtrrd 2831 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ 𝐾)
44 cnima 23150 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ 𝐾) → (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ 𝐽)
4520, 43, 44syl2anc 584 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ 𝐽)
467, 16, 17mstopn 24338 . . . . . . . . 9 (𝑆 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
4711, 12, 13, 464syl 19 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
4845, 47eleqtrd 2830 . . . . . . 7 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
49 nlmlmod 24564 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ LMod)
50 eqid 2729 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
5116, 50lmod0vcl 20794 . . . . . . . . 9 (𝑆 ∈ LMod → (0g𝑆) ∈ (Base‘𝑆))
5211, 49, 513syl 18 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑆) ∈ (Base‘𝑆))
53 lmghm 20935 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5453ad2antlr 727 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5550, 32ghmid 19101 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
5654, 55syl 17 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹‘(0g𝑆)) = (0g𝑇))
5735a1i 11 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 1 ∈ ℝ+)
58 blcntr 24299 . . . . . . . . . 10 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (0g𝑇) ∈ (Base‘𝑇) ∧ 1 ∈ ℝ+) → (0g𝑇) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))
5930, 34, 57, 58syl3anc 1373 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑇) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))
6056, 59eqeltrd 2828 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹‘(0g𝑆)) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))
6116, 27lmhmf 20938 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
6261ad2antlr 727 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
63 ffn 6652 . . . . . . . . 9 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
64 elpreima 6992 . . . . . . . . 9 (𝐹 Fn (Base‘𝑆) → ((0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
6562, 63, 643syl 18 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
6652, 60, 65mpbir2and 713 . . . . . . 7 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))
67 eqid 2729 . . . . . . . 8 (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))
6867mopni2 24379 . . . . . . 7 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) ∧ (0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))) → ∃𝑥 ∈ ℝ+ ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))
6919, 48, 66, 68syl3anc 1373 . . . . . 6 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∃𝑥 ∈ ℝ+ ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))
70 simpl1 1192 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ (NrmMod ∩ ℂMod))
7170elin1d 4155 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ NrmMod)
7271, 12syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ NrmGrp)
7372adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ NrmGrp)
7473ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ NrmGrp)
75 ngpgrp 24485 . . . . . . . . . . . . . . . 16 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
7674, 75syl 17 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ Grp)
77 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
78 eqid 2729 . . . . . . . . . . . . . . . 16 (norm‘𝑆) = (norm‘𝑆)
79 eqid 2729 . . . . . . . . . . . . . . . 16 (dist‘𝑆) = (dist‘𝑆)
8078, 16, 50, 79, 17nmval2 24478 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑦) = (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)))
8176, 77, 80syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑦) = (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)))
8219ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
8352ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (0g𝑆) ∈ (Base‘𝑆))
84 xmetsym 24233 . . . . . . . . . . . . . . 15 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆) ∧ (0g𝑆) ∈ (Base‘𝑆)) → (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)) = ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦))
8582, 77, 83, 84syl3anc 1373 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)) = ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦))
8681, 85eqtrd 2764 . . . . . . . . . . . . 13 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑦) = ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦))
8786breq1d 5102 . . . . . . . . . . . 12 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑆)‘𝑦) < 𝑥 ↔ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥))
8887biimpd 229 . . . . . . . . . . 11 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑆)‘𝑦) < 𝑥 → ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥))
8962ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
90 elpreima 6992 . . . . . . . . . . . . 13 (𝐹 Fn (Base‘𝑆) → (𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
9189, 63, 903syl 18 . . . . . . . . . . . 12 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
9230ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
9334ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (0g𝑇) ∈ (Base‘𝑇))
9435, 36mp1i 13 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 1 ∈ ℝ*)
95 elbl 24274 . . . . . . . . . . . . . . 15 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (0g𝑇) ∈ (Base‘𝑇) ∧ 1 ∈ ℝ*) → ((𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ↔ ((𝐹𝑦) ∈ (Base‘𝑇) ∧ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1)))
9692, 93, 94, 95syl3anc 1373 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ↔ ((𝐹𝑦) ∈ (Base‘𝑇) ∧ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1)))
97 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ (NrmMod ∩ ℂMod))
9897elin1d 4155 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ NrmMod)
9998, 23syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ NrmGrp)
10099adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ NrmGrp)
101100ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑇 ∈ NrmGrp)
102 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
103102adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (𝑆 LMHom 𝑇))
104103, 61syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
105104ffvelcdmda 7018 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑦) ∈ (Base‘𝑇))
106 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (norm‘𝑇) = (norm‘𝑇)
10727, 106nmcl 24502 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑦)) ∈ ℝ)
108101, 105, 107syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑦)) ∈ ℝ)
109 1re 11115 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
110 ltle 11204 . . . . . . . . . . . . . . . . 17 ((((norm‘𝑇)‘(𝐹𝑦)) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘𝑇)‘(𝐹𝑦)) < 1 → ((norm‘𝑇)‘(𝐹𝑦)) ≤ 1))
111108, 109, 110sylancl 586 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑇)‘(𝐹𝑦)) < 1 → ((norm‘𝑇)‘(𝐹𝑦)) ≤ 1))
112 ngpgrp 24485 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
113101, 112syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑇 ∈ Grp)
114 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (dist‘𝑇) = (dist‘𝑇)
115106, 27, 32, 114, 28nmval2 24478 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Grp ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑦)) = ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)))
116113, 105, 115syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑦)) = ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)))
117 xmetsym 24233 . . . . . . . . . . . . . . . . . . 19 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (𝐹𝑦) ∈ (Base‘𝑇) ∧ (0g𝑇) ∈ (Base‘𝑇)) → ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)) = ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)))
11892, 105, 93, 117syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)) = ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)))
119116, 118eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑦)) = ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)))
120119breq1d 5102 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑇)‘(𝐹𝑦)) < 1 ↔ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1))
121 1red 11116 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 1 ∈ ℝ)
122 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ ℝ+)
123108, 121, 122lediv1d 12983 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑇)‘(𝐹𝑦)) ≤ 1 ↔ (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
124111, 120, 1233imtr3d 293 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
125124adantld 490 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝐹𝑦) ∈ (Base‘𝑇) ∧ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
12696, 125sylbid 240 . . . . . . . . . . . . 13 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
127126adantld 490 . . . . . . . . . . . 12 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
12891, 127sylbid 240 . . . . . . . . . . 11 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
12988, 128imim12d 81 . . . . . . . . . 10 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))) → (((norm‘𝑆)‘𝑦) < 𝑥 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥))))
130129ralimdva 3141 . . . . . . . . 9 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (∀𝑦 ∈ (Base‘𝑆)(((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))) → ∀𝑦 ∈ (Base‘𝑆)(((norm‘𝑆)‘𝑦) < 𝑥 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥))))
131 rpxr 12903 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
132 blval 24272 . . . . . . . . . . . 12 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ (0g𝑆) ∈ (Base‘𝑆) ∧ 𝑥 ∈ ℝ*) → ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) = {𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥})
13319, 52, 131, 132syl2an3an 1424 . . . . . . . . . . 11 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) = {𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥})
134133sseq1d 3967 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ {𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥} ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
135 rabss 4023 . . . . . . . . . 10 ({𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥} ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ∀𝑦 ∈ (Base‘𝑆)(((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
136134, 135bitrdi 287 . . . . . . . . 9 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ∀𝑦 ∈ (Base‘𝑆)(((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))))
137 eqid 2729 . . . . . . . . . 10 (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇)
138 nmhmcn.g . . . . . . . . . 10 𝐺 = (Scalar‘𝑆)
139 nmhmcn.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
14010adantr 480 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝑆 ∈ (NrmMod ∩ ℂMod))
14121adantr 480 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝑇 ∈ (NrmMod ∩ ℂMod))
142 rpreccl 12921 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
143142adantl 481 . . . . . . . . . . 11 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
144143rpxrd 12938 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ*)
145 simpr 484 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
146 simpl3 1194 . . . . . . . . . . 11 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → ℚ ⊆ 𝐵)
147146ad2antrr 726 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → ℚ ⊆ 𝐵)
148137, 16, 78, 106, 138, 139, 140, 141, 103, 144, 145, 147nmoleub2b 25016 . . . . . . . . 9 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥) ↔ ∀𝑦 ∈ (Base‘𝑆)(((norm‘𝑆)‘𝑦) < 𝑥 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥))))
149130, 136, 1483imtr4d 294 . . . . . . . 8 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → ((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥)))
15073, 100, 543jca 1128 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
151142rpred 12937 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
152137bddnghm 24612 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ ((1 / 𝑥) ∈ ℝ ∧ ((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥))) → 𝐹 ∈ (𝑆 NGHom 𝑇))
153152expr 456 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (1 / 𝑥) ∈ ℝ) → (((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
154150, 151, 153syl2an 596 . . . . . . . 8 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
155149, 154syld 47 . . . . . . 7 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
156155rexlimdva 3130 . . . . . 6 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (∃𝑥 ∈ ℝ+ ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
15769, 156mpd 15 . . . . 5 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝑆 NGHom 𝑇))
158157ex 412 . . . 4 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
1599, 158impbid2 226 . . 3 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ 𝐹 ∈ (𝐽 Cn 𝐾)))
160159pm5.32da 579 . 2 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾))))
1616, 160bitrd 279 1 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  cin 3902  wss 3903   class class class wbr 5092   × cxp 5617  ccnv 5618  cres 5621  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010  *cxr 11148   < clt 11149  cle 11150   / cdiv 11777  cq 12849  +crp 12893  Basecbs 17120  Scalarcsca 17164  distcds 17170  TopOpenctopn 17325  0gc0g 17343  Grpcgrp 18812   GrpHom cghm 19091  LModclmod 20763   LMHom clmhm 20923  ∞Metcxmet 21246  ballcbl 21248  MetOpencmopn 21251   Cn ccn 23109  ∞MetSpcxms 24203  MetSpcms 24204  normcnm 24462  NrmGrpcngp 24463  NrmModcnlm 24466   normOp cnmo 24591   NGHom cnghm 24592   NMHom cnmhm 24593  ℂModcclm 24960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-topgen 17347  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-cmn 19661  df-mgp 20026  df-ring 20120  df-cring 20121  df-subrg 20455  df-lmod 20765  df-lmhm 20926  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-xms 24206  df-ms 24207  df-nm 24468  df-ngp 24469  df-nlm 24472  df-nmo 24594  df-nghm 24595  df-nmhm 24596  df-clm 24961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator