MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initorcl Structured version   Visualization version   GIF version

Theorem initorcl 17952
Description: Reverse closure for an initial object: If a class has an initial object, the class is a category. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
initorcl (𝐼 ∈ (InitOβ€˜πΆ) β†’ 𝐢 ∈ Cat)

Proof of Theorem initorcl
Dummy variables π‘Ž 𝑏 𝑐 β„Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-inito 17946 . 2 InitO = (𝑐 ∈ Cat ↦ {π‘Ž ∈ (Baseβ€˜π‘) ∣ βˆ€π‘ ∈ (Baseβ€˜π‘)βˆƒ!β„Ž β„Ž ∈ (π‘Ž(Hom β€˜π‘)𝑏)})
21mptrcl 7001 1 (𝐼 ∈ (InitOβ€˜πΆ) β†’ 𝐢 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  βˆƒ!weu 2556  βˆ€wral 3055  {crab 3426  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  Hom chom 17217  Catccat 17617  InitOcinito 17943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-xp 5675  df-rel 5676  df-cnv 5677  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fv 6545  df-inito 17946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator