| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > initorcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an initial object: If a class has an initial object, the class is a category. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| initorcl | ⊢ (𝐼 ∈ (InitO‘𝐶) → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inito 17910 | . 2 ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) | |
| 2 | 1 | mptrcl 6943 | 1 ⊢ (𝐼 ∈ (InitO‘𝐶) → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃!weu 2561 ∀wral 3044 {crab 3396 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 Hom chom 17191 Catccat 17589 InitOcinito 17907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fv 6494 df-inito 17910 |
| This theorem is referenced by: initoo2 49237 oppcinito 49240 oppctermo 49241 isinito2 49504 isinito4a 49553 initocmd 49674 |
| Copyright terms: Public domain | W3C validator |