![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submcmn2 | Structured version Visualization version GIF version |
Description: A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
subgabl.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
submcmn2.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
submcmn2 | ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgabl.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | 1 | submbas 18839 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻)) |
3 | eqid 2734 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | ressplusg 17335 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
5 | 4 | oveqd 7447 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
6 | 4 | oveqd 7447 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝑦(+g‘𝐺)𝑥) = (𝑦(+g‘𝐻)𝑥)) |
7 | 5, 6 | eqeq12d 2750 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
8 | 2, 7 | raleqbidv 3343 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ ∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
9 | 2, 8 | raleqbidv 3343 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
10 | eqid 2734 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 10 | submss 18834 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
12 | submcmn2.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
13 | 10, 3, 12 | sscntz 19356 | . . 3 ⊢ ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑆 ⊆ (𝑍‘𝑆) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
14 | 11, 11, 13 | syl2anc 584 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝑆 ⊆ (𝑍‘𝑆) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
15 | 1 | submmnd 18838 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd) |
16 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
17 | eqid 2734 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
18 | 16, 17 | iscmn 19821 | . . . 4 ⊢ (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
19 | 18 | baib 535 | . . 3 ⊢ (𝐻 ∈ Mnd → (𝐻 ∈ CMnd ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
20 | 15, 19 | syl 17 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
21 | 9, 14, 20 | 3bitr4rd 312 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 ↾s cress 17273 +gcplusg 17297 Mndcmnd 18759 SubMndcsubmnd 18807 Cntzccntz 19345 CMndccmn 19812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-cntz 19347 df-cmn 19814 |
This theorem is referenced by: cntzspan 19876 gsumzsplit 19959 gsumzoppg 19976 gsumpt 19994 |
Copyright terms: Public domain | W3C validator |