MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submcmn2 Structured version   Visualization version   GIF version

Theorem submcmn2 19871
Description: A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
subgabl.h 𝐻 = (𝐺s 𝑆)
submcmn2.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
submcmn2 (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍𝑆)))

Proof of Theorem submcmn2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgabl.h . . . 4 𝐻 = (𝐺s 𝑆)
21submbas 18839 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
3 eqid 2734 . . . . . . 7 (+g𝐺) = (+g𝐺)
41, 3ressplusg 17335 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐻))
54oveqd 7447 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
64oveqd 7447 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐻)𝑥))
75, 6eqeq12d 2750 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
82, 7raleqbidv 3343 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
92, 8raleqbidv 3343 . 2 (𝑆 ∈ (SubMnd‘𝐺) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
10 eqid 2734 . . . 4 (Base‘𝐺) = (Base‘𝐺)
1110submss 18834 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
12 submcmn2.z . . . 4 𝑍 = (Cntz‘𝐺)
1310, 3, 12sscntz 19356 . . 3 ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑆 ⊆ (𝑍𝑆) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1411, 11, 13syl2anc 584 . 2 (𝑆 ∈ (SubMnd‘𝐺) → (𝑆 ⊆ (𝑍𝑆) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
151submmnd 18838 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
16 eqid 2734 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
17 eqid 2734 . . . . 5 (+g𝐻) = (+g𝐻)
1816, 17iscmn 19821 . . . 4 (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
1918baib 535 . . 3 (𝐻 ∈ Mnd → (𝐻 ∈ CMnd ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2015, 19syl 17 . 2 (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
219, 14, 203bitr4rd 312 1 (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105  wral 3058  wss 3962  cfv 6562  (class class class)co 7430  Basecbs 17244  s cress 17273  +gcplusg 17297  Mndcmnd 18759  SubMndcsubmnd 18807  Cntzccntz 19345  CMndccmn 19812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-cntz 19347  df-cmn 19814
This theorem is referenced by:  cntzspan  19876  gsumzsplit  19959  gsumzoppg  19976  gsumpt  19994
  Copyright terms: Public domain W3C validator