![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submcmn2 | Structured version Visualization version GIF version |
Description: A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
subgabl.h | β’ π» = (πΊ βΎs π) |
submcmn2.z | β’ π = (CntzβπΊ) |
Ref | Expression |
---|---|
submcmn2 | β’ (π β (SubMndβπΊ) β (π» β CMnd β π β (πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgabl.h | . . . 4 β’ π» = (πΊ βΎs π) | |
2 | 1 | submbas 18770 | . . 3 β’ (π β (SubMndβπΊ) β π = (Baseβπ»)) |
3 | eqid 2725 | . . . . . . 7 β’ (+gβπΊ) = (+gβπΊ) | |
4 | 1, 3 | ressplusg 17270 | . . . . . 6 β’ (π β (SubMndβπΊ) β (+gβπΊ) = (+gβπ»)) |
5 | 4 | oveqd 7433 | . . . . 5 β’ (π β (SubMndβπΊ) β (π₯(+gβπΊ)π¦) = (π₯(+gβπ»)π¦)) |
6 | 4 | oveqd 7433 | . . . . 5 β’ (π β (SubMndβπΊ) β (π¦(+gβπΊ)π₯) = (π¦(+gβπ»)π₯)) |
7 | 5, 6 | eqeq12d 2741 | . . . 4 β’ (π β (SubMndβπΊ) β ((π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯) β (π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
8 | 2, 7 | raleqbidv 3330 | . . 3 β’ (π β (SubMndβπΊ) β (βπ¦ β π (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯) β βπ¦ β (Baseβπ»)(π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
9 | 2, 8 | raleqbidv 3330 | . 2 β’ (π β (SubMndβπΊ) β (βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯) β βπ₯ β (Baseβπ»)βπ¦ β (Baseβπ»)(π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
10 | eqid 2725 | . . . 4 β’ (BaseβπΊ) = (BaseβπΊ) | |
11 | 10 | submss 18765 | . . 3 β’ (π β (SubMndβπΊ) β π β (BaseβπΊ)) |
12 | submcmn2.z | . . . 4 β’ π = (CntzβπΊ) | |
13 | 10, 3, 12 | sscntz 19281 | . . 3 β’ ((π β (BaseβπΊ) β§ π β (BaseβπΊ)) β (π β (πβπ) β βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯))) |
14 | 11, 11, 13 | syl2anc 582 | . 2 β’ (π β (SubMndβπΊ) β (π β (πβπ) β βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯))) |
15 | 1 | submmnd 18769 | . . 3 β’ (π β (SubMndβπΊ) β π» β Mnd) |
16 | eqid 2725 | . . . . 5 β’ (Baseβπ») = (Baseβπ») | |
17 | eqid 2725 | . . . . 5 β’ (+gβπ») = (+gβπ») | |
18 | 16, 17 | iscmn 19748 | . . . 4 β’ (π» β CMnd β (π» β Mnd β§ βπ₯ β (Baseβπ»)βπ¦ β (Baseβπ»)(π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
19 | 18 | baib 534 | . . 3 β’ (π» β Mnd β (π» β CMnd β βπ₯ β (Baseβπ»)βπ¦ β (Baseβπ»)(π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
20 | 15, 19 | syl 17 | . 2 β’ (π β (SubMndβπΊ) β (π» β CMnd β βπ₯ β (Baseβπ»)βπ¦ β (Baseβπ»)(π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
21 | 9, 14, 20 | 3bitr4rd 311 | 1 β’ (π β (SubMndβπΊ) β (π» β CMnd β π β (πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 βwral 3051 β wss 3939 βcfv 6543 (class class class)co 7416 Basecbs 17179 βΎs cress 17208 +gcplusg 17232 Mndcmnd 18693 SubMndcsubmnd 18738 Cntzccntz 19270 CMndccmn 19739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-cntz 19272 df-cmn 19741 |
This theorem is referenced by: cntzspan 19803 gsumzsplit 19886 gsumzoppg 19903 gsumpt 19921 |
Copyright terms: Public domain | W3C validator |