MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submcmn2 Structured version   Visualization version   GIF version

Theorem submcmn2 19753
Description: A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
subgabl.h 𝐻 = (𝐺s 𝑆)
submcmn2.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
submcmn2 (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍𝑆)))

Proof of Theorem submcmn2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgabl.h . . . 4 𝐻 = (𝐺s 𝑆)
21submbas 18724 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
3 eqid 2733 . . . . . . 7 (+g𝐺) = (+g𝐺)
41, 3ressplusg 17197 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐻))
54oveqd 7369 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
64oveqd 7369 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐻)𝑥))
75, 6eqeq12d 2749 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
82, 7raleqbidv 3313 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
92, 8raleqbidv 3313 . 2 (𝑆 ∈ (SubMnd‘𝐺) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
10 eqid 2733 . . . 4 (Base‘𝐺) = (Base‘𝐺)
1110submss 18719 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
12 submcmn2.z . . . 4 𝑍 = (Cntz‘𝐺)
1310, 3, 12sscntz 19240 . . 3 ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑆 ⊆ (𝑍𝑆) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1411, 11, 13syl2anc 584 . 2 (𝑆 ∈ (SubMnd‘𝐺) → (𝑆 ⊆ (𝑍𝑆) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
151submmnd 18723 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
16 eqid 2733 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
17 eqid 2733 . . . . 5 (+g𝐻) = (+g𝐻)
1816, 17iscmn 19703 . . . 4 (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
1918baib 535 . . 3 (𝐻 ∈ Mnd → (𝐻 ∈ CMnd ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2015, 19syl 17 . 2 (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
219, 14, 203bitr4rd 312 1 (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wral 3048  wss 3898  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  +gcplusg 17163  Mndcmnd 18644  SubMndcsubmnd 18692  Cntzccntz 19229  CMndccmn 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-cntz 19231  df-cmn 19696
This theorem is referenced by:  cntzspan  19758  gsumzsplit  19841  gsumzoppg  19858  gsumpt  19876
  Copyright terms: Public domain W3C validator