Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > submcmn2 | Structured version Visualization version GIF version |
Description: A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
subgabl.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
submcmn2.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
submcmn2 | ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgabl.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | 1 | submbas 18368 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻)) |
3 | eqid 2738 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | ressplusg 16926 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
5 | 4 | oveqd 7272 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
6 | 4 | oveqd 7272 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝑦(+g‘𝐺)𝑥) = (𝑦(+g‘𝐻)𝑥)) |
7 | 5, 6 | eqeq12d 2754 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
8 | 2, 7 | raleqbidv 3327 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ ∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
9 | 2, 8 | raleqbidv 3327 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
10 | eqid 2738 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 10 | submss 18363 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
12 | submcmn2.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
13 | 10, 3, 12 | sscntz 18847 | . . 3 ⊢ ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑆 ⊆ (𝑍‘𝑆) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
14 | 11, 11, 13 | syl2anc 583 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝑆 ⊆ (𝑍‘𝑆) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
15 | 1 | submmnd 18367 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd) |
16 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
17 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
18 | 16, 17 | iscmn 19309 | . . . 4 ⊢ (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
19 | 18 | baib 535 | . . 3 ⊢ (𝐻 ∈ Mnd → (𝐻 ∈ CMnd ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
20 | 15, 19 | syl 17 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
21 | 9, 14, 20 | 3bitr4rd 311 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 +gcplusg 16888 Mndcmnd 18300 SubMndcsubmnd 18344 Cntzccntz 18836 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-cntz 18838 df-cmn 19303 |
This theorem is referenced by: cntzspan 19360 gsumzsplit 19443 gsumzoppg 19460 gsumpt 19478 |
Copyright terms: Public domain | W3C validator |