![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submcmn2 | Structured version Visualization version GIF version |
Description: A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
subgabl.h | β’ π» = (πΊ βΎs π) |
submcmn2.z | β’ π = (CntzβπΊ) |
Ref | Expression |
---|---|
submcmn2 | β’ (π β (SubMndβπΊ) β (π» β CMnd β π β (πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgabl.h | . . . 4 β’ π» = (πΊ βΎs π) | |
2 | 1 | submbas 18739 | . . 3 β’ (π β (SubMndβπΊ) β π = (Baseβπ»)) |
3 | eqid 2726 | . . . . . . 7 β’ (+gβπΊ) = (+gβπΊ) | |
4 | 1, 3 | ressplusg 17244 | . . . . . 6 β’ (π β (SubMndβπΊ) β (+gβπΊ) = (+gβπ»)) |
5 | 4 | oveqd 7422 | . . . . 5 β’ (π β (SubMndβπΊ) β (π₯(+gβπΊ)π¦) = (π₯(+gβπ»)π¦)) |
6 | 4 | oveqd 7422 | . . . . 5 β’ (π β (SubMndβπΊ) β (π¦(+gβπΊ)π₯) = (π¦(+gβπ»)π₯)) |
7 | 5, 6 | eqeq12d 2742 | . . . 4 β’ (π β (SubMndβπΊ) β ((π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯) β (π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
8 | 2, 7 | raleqbidv 3336 | . . 3 β’ (π β (SubMndβπΊ) β (βπ¦ β π (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯) β βπ¦ β (Baseβπ»)(π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
9 | 2, 8 | raleqbidv 3336 | . 2 β’ (π β (SubMndβπΊ) β (βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯) β βπ₯ β (Baseβπ»)βπ¦ β (Baseβπ»)(π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
10 | eqid 2726 | . . . 4 β’ (BaseβπΊ) = (BaseβπΊ) | |
11 | 10 | submss 18734 | . . 3 β’ (π β (SubMndβπΊ) β π β (BaseβπΊ)) |
12 | submcmn2.z | . . . 4 β’ π = (CntzβπΊ) | |
13 | 10, 3, 12 | sscntz 19242 | . . 3 β’ ((π β (BaseβπΊ) β§ π β (BaseβπΊ)) β (π β (πβπ) β βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯))) |
14 | 11, 11, 13 | syl2anc 583 | . 2 β’ (π β (SubMndβπΊ) β (π β (πβπ) β βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯))) |
15 | 1 | submmnd 18738 | . . 3 β’ (π β (SubMndβπΊ) β π» β Mnd) |
16 | eqid 2726 | . . . . 5 β’ (Baseβπ») = (Baseβπ») | |
17 | eqid 2726 | . . . . 5 β’ (+gβπ») = (+gβπ») | |
18 | 16, 17 | iscmn 19709 | . . . 4 β’ (π» β CMnd β (π» β Mnd β§ βπ₯ β (Baseβπ»)βπ¦ β (Baseβπ»)(π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
19 | 18 | baib 535 | . . 3 β’ (π» β Mnd β (π» β CMnd β βπ₯ β (Baseβπ»)βπ¦ β (Baseβπ»)(π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
20 | 15, 19 | syl 17 | . 2 β’ (π β (SubMndβπΊ) β (π» β CMnd β βπ₯ β (Baseβπ»)βπ¦ β (Baseβπ»)(π₯(+gβπ»)π¦) = (π¦(+gβπ»)π₯))) |
21 | 9, 14, 20 | 3bitr4rd 312 | 1 β’ (π β (SubMndβπΊ) β (π» β CMnd β π β (πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 βwral 3055 β wss 3943 βcfv 6537 (class class class)co 7405 Basecbs 17153 βΎs cress 17182 +gcplusg 17206 Mndcmnd 18667 SubMndcsubmnd 18712 Cntzccntz 19231 CMndccmn 19700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-cntz 19233 df-cmn 19702 |
This theorem is referenced by: cntzspan 19764 gsumzsplit 19847 gsumzoppg 19864 gsumpt 19882 |
Copyright terms: Public domain | W3C validator |