MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrs1cmn Structured version   Visualization version   GIF version

Theorem xrs1cmn 21384
Description: The extended real numbers restricted to * ∖ {-∞} form a commutative monoid. They are not a group because 1 + +∞ = 2 + +∞ even though 1 ≠ 2. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrs1cmn 𝑅 ∈ CMnd

Proof of Theorem xrs1cmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrs1mnd.1 . . 3 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1mnd 21382 . 2 𝑅 ∈ Mnd
3 eldifi 4090 . . . 4 (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*)
4 eldifi 4090 . . . 4 (𝑦 ∈ (ℝ* ∖ {-∞}) → 𝑦 ∈ ℝ*)
5 xaddcom 13176 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥))
63, 4, 5syl2an 596 . . 3 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥))
76rgen2 3175 . 2 𝑥 ∈ (ℝ* ∖ {-∞})∀𝑦 ∈ (ℝ* ∖ {-∞})(𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥)
8 difss 4095 . . . 4 (ℝ* ∖ {-∞}) ⊆ ℝ*
9 xrsbas 17545 . . . . 5 * = (Base‘ℝ*𝑠)
101, 9ressbas2 17184 . . . 4 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
118, 10ax-mp 5 . . 3 (ℝ* ∖ {-∞}) = (Base‘𝑅)
12 xrex 12922 . . . . 5 * ∈ V
1312difexi 5280 . . . 4 (ℝ* ∖ {-∞}) ∈ V
14 xrsadd 21327 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
151, 14ressplusg 17230 . . . 4 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
1613, 15ax-mp 5 . . 3 +𝑒 = (+g𝑅)
1711, 16iscmn 19703 . 2 (𝑅 ∈ CMnd ↔ (𝑅 ∈ Mnd ∧ ∀𝑥 ∈ (ℝ* ∖ {-∞})∀𝑦 ∈ (ℝ* ∖ {-∞})(𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥)))
182, 7, 17mpbir2an 711 1 𝑅 ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cdif 3908  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  -∞cmnf 11182  *cxr 11183   +𝑒 cxad 13046  Basecbs 17155  s cress 17176  +gcplusg 17196  *𝑠cxrs 17439  Mndcmnd 18643  CMndccmn 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-xadd 13049  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-tset 17215  df-ple 17216  df-ds 17218  df-xrs 17441  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-cmn 19696
This theorem is referenced by:  xrge0cmn  21386  imasdsf1olem  24294  gsumge0cl  46362
  Copyright terms: Public domain W3C validator