Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrs1cmn | Structured version Visualization version GIF version |
Description: The extended real numbers restricted to ℝ* ∖ {-∞} form a commutative monoid. They are not a group because 1 + +∞ = 2 + +∞ even though 1 ≠ 2. (Contributed by Mario Carneiro, 27-Nov-2014.) |
Ref | Expression |
---|---|
xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
Ref | Expression |
---|---|
xrs1cmn | ⊢ 𝑅 ∈ CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrs1mnd.1 | . . 3 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
2 | 1 | xrs1mnd 20204 | . 2 ⊢ 𝑅 ∈ Mnd |
3 | eldifi 4032 | . . . 4 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*) | |
4 | eldifi 4032 | . . . 4 ⊢ (𝑦 ∈ (ℝ* ∖ {-∞}) → 𝑦 ∈ ℝ*) | |
5 | xaddcom 12674 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥)) | |
6 | 3, 4, 5 | syl2an 598 | . . 3 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥)) |
7 | 6 | rgen2 3132 | . 2 ⊢ ∀𝑥 ∈ (ℝ* ∖ {-∞})∀𝑦 ∈ (ℝ* ∖ {-∞})(𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥) |
8 | difss 4037 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
9 | xrsbas 20182 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
10 | 1, 9 | ressbas2 16613 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
11 | 8, 10 | ax-mp 5 | . . 3 ⊢ (ℝ* ∖ {-∞}) = (Base‘𝑅) |
12 | xrex 12427 | . . . . 5 ⊢ ℝ* ∈ V | |
13 | 12 | difexi 5198 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ∈ V |
14 | xrsadd 20183 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
15 | 1, 14 | ressplusg 16670 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
16 | 13, 15 | ax-mp 5 | . . 3 ⊢ +𝑒 = (+g‘𝑅) |
17 | 11, 16 | iscmn 18981 | . 2 ⊢ (𝑅 ∈ CMnd ↔ (𝑅 ∈ Mnd ∧ ∀𝑥 ∈ (ℝ* ∖ {-∞})∀𝑦 ∈ (ℝ* ∖ {-∞})(𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥))) |
18 | 2, 7, 17 | mpbir2an 710 | 1 ⊢ 𝑅 ∈ CMnd |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ∖ cdif 3855 ⊆ wss 3858 {csn 4522 ‘cfv 6335 (class class class)co 7150 -∞cmnf 10711 ℝ*cxr 10712 +𝑒 cxad 12546 Basecbs 16541 ↾s cress 16542 +gcplusg 16623 ℝ*𝑠cxrs 16831 Mndcmnd 17977 CMndccmn 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-xadd 12549 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-tset 16642 df-ple 16643 df-ds 16645 df-xrs 16833 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-cmn 18975 |
This theorem is referenced by: xrge0cmn 20208 imasdsf1olem 23075 gsumge0cl 43376 |
Copyright terms: Public domain | W3C validator |