MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrs1cmn Structured version   Visualization version   GIF version

Theorem xrs1cmn 21323
Description: The extended real numbers restricted to * ∖ {-∞} form a commutative monoid. They are not a group because 1 + +∞ = 2 + +∞ even though 1 ≠ 2. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrs1cmn 𝑅 ∈ CMnd

Proof of Theorem xrs1cmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrs1mnd.1 . . 3 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1mnd 21321 . 2 𝑅 ∈ Mnd
3 eldifi 4094 . . . 4 (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*)
4 eldifi 4094 . . . 4 (𝑦 ∈ (ℝ* ∖ {-∞}) → 𝑦 ∈ ℝ*)
5 xaddcom 13200 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥))
63, 4, 5syl2an 596 . . 3 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥))
76rgen2 3177 . 2 𝑥 ∈ (ℝ* ∖ {-∞})∀𝑦 ∈ (ℝ* ∖ {-∞})(𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥)
8 difss 4099 . . . 4 (ℝ* ∖ {-∞}) ⊆ ℝ*
9 xrsbas 21295 . . . . 5 * = (Base‘ℝ*𝑠)
101, 9ressbas2 17208 . . . 4 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
118, 10ax-mp 5 . . 3 (ℝ* ∖ {-∞}) = (Base‘𝑅)
12 xrex 12946 . . . . 5 * ∈ V
1312difexi 5285 . . . 4 (ℝ* ∖ {-∞}) ∈ V
14 xrsadd 21296 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
151, 14ressplusg 17254 . . . 4 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
1613, 15ax-mp 5 . . 3 +𝑒 = (+g𝑅)
1711, 16iscmn 19719 . 2 (𝑅 ∈ CMnd ↔ (𝑅 ∈ Mnd ∧ ∀𝑥 ∈ (ℝ* ∖ {-∞})∀𝑦 ∈ (ℝ* ∖ {-∞})(𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥)))
182, 7, 17mpbir2an 711 1 𝑅 ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  -∞cmnf 11206  *cxr 11207   +𝑒 cxad 13070  Basecbs 17179  s cress 17200  +gcplusg 17220  *𝑠cxrs 17463  Mndcmnd 18661  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-xadd 13073  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-tset 17239  df-ple 17240  df-ds 17242  df-xrs 17465  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-cmn 19712
This theorem is referenced by:  xrge0cmn  21325  imasdsf1olem  24261  gsumge0cl  46369
  Copyright terms: Public domain W3C validator