MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrfis Structured version   Visualization version   GIF version

Theorem fusgrfis 29306
Description: A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Assertion
Ref Expression
fusgrfis (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)

Proof of Theorem fusgrfis
Dummy variables 𝑒 𝑓 𝑛 𝑝 𝑞 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21isfusgr 29294 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin))
3 usgrop 29139 . . . 4 (𝐺 ∈ USGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ USGraph)
4 fvex 6835 . . . . 5 (iEdg‘𝐺) ∈ V
5 mptresid 6000 . . . . . 6 ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) = (𝑞 ∈ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} ↦ 𝑞)
6 fvex 6835 . . . . . . 7 (Edg‘⟨𝑣, 𝑒⟩) ∈ V
76mptrabex 7159 . . . . . 6 (𝑞 ∈ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} ↦ 𝑞) ∈ V
85, 7eqeltri 2827 . . . . 5 ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ V
9 eleq1 2819 . . . . . 6 (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
109adantl 481 . . . . 5 ((𝑣 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
11 eleq1 2819 . . . . . 6 (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
1211adantl 481 . . . . 5 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
13 vex 3440 . . . . . . . 8 𝑣 ∈ V
14 vex 3440 . . . . . . . 8 𝑒 ∈ V
1513, 14opvtxfvi 28985 . . . . . . 7 (Vtx‘⟨𝑣, 𝑒⟩) = 𝑣
1615eqcomi 2740 . . . . . 6 𝑣 = (Vtx‘⟨𝑣, 𝑒⟩)
17 eqid 2731 . . . . . 6 (Edg‘⟨𝑣, 𝑒⟩) = (Edg‘⟨𝑣, 𝑒⟩)
18 eqid 2731 . . . . . 6 {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} = {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}
19 eqid 2731 . . . . . 6 ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩ = ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩
2016, 17, 18, 19usgrres1 29291 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩ ∈ USGraph)
21 eleq1 2819 . . . . . 6 (𝑓 = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin))
2221adantl 481 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin))
2313, 14pm3.2i 470 . . . . . 6 (𝑣 ∈ V ∧ 𝑒 ∈ V)
24 fusgrfisbase 29304 . . . . . 6 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = 0) → 𝑒 ∈ Fin)
2523, 24mp3an1 1450 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = 0) → 𝑒 ∈ Fin)
26 simpl 482 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → (𝑣 ∈ V ∧ 𝑒 ∈ V))
27 simprr1 1222 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ⟨𝑣, 𝑒⟩ ∈ USGraph)
28 eleq1 2819 . . . . . . . . . . . . . 14 ((♯‘𝑣) = (𝑦 + 1) → ((♯‘𝑣) ∈ ℕ0 ↔ (𝑦 + 1) ∈ ℕ0))
29 hashclb 14262 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ V → (𝑣 ∈ Fin ↔ (♯‘𝑣) ∈ ℕ0))
3029biimprd 248 . . . . . . . . . . . . . . . 16 (𝑣 ∈ V → ((♯‘𝑣) ∈ ℕ0𝑣 ∈ Fin))
3130adantr 480 . . . . . . . . . . . . . . 15 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → ((♯‘𝑣) ∈ ℕ0𝑣 ∈ Fin))
3231com12 32 . . . . . . . . . . . . . 14 ((♯‘𝑣) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))
3328, 32biimtrrdi 254 . . . . . . . . . . . . 13 ((♯‘𝑣) = (𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)))
34333ad2ant2 1134 . . . . . . . . . . . 12 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) → ((𝑦 + 1) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)))
3534impcom 407 . . . . . . . . . . 11 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))
3635impcom 407 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → 𝑣 ∈ Fin)
37 opfusgr 29299 . . . . . . . . . . 11 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (⟨𝑣, 𝑒⟩ ∈ FinUSGraph ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑣 ∈ Fin)))
3837adantr 480 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → (⟨𝑣, 𝑒⟩ ∈ FinUSGraph ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑣 ∈ Fin)))
3927, 36, 38mpbir2and 713 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ⟨𝑣, 𝑒⟩ ∈ FinUSGraph)
40 simprr3 1224 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → 𝑛𝑣)
4126, 39, 403jca 1128 . . . . . . . 8 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣))
4223, 41mpan 690 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣))
43 fusgrfisstep 29305 . . . . . . 7 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin → 𝑒 ∈ Fin))
4442, 43syl 17 . . . . . 6 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin → 𝑒 ∈ Fin))
4544imp 406 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin) → 𝑒 ∈ Fin)
464, 8, 10, 12, 20, 22, 25, 45opfi1ind 14416 . . . 4 ((⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (iEdg‘𝐺) ∈ Fin)
473, 46sylan 580 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (iEdg‘𝐺) ∈ Fin)
48 eqid 2731 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
49 eqid 2731 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
5048, 49usgredgffibi 29300 . . . 4 (𝐺 ∈ USGraph → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
5150adantr 480 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
5247, 51mpbird 257 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (Edg‘𝐺) ∈ Fin)
532, 52sylbi 217 1 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wnel 3032  {crab 3395  Vcvv 3436  cdif 3899  {csn 4576  cop 4582  cmpt 5172   I cid 5510  cres 5618  cfv 6481  (class class class)co 7346  Fincfn 8869  0cc0 11003  1c1 11004   + caddc 11006  0cn0 12378  chash 14234  Vtxcvtx 28972  iEdgciedg 28973  Edgcedg 29023  USGraphcusgr 29125  FinUSGraphcfusgr 29292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-hash 14235  df-vtx 28974  df-iedg 28975  df-edg 29024  df-uhgr 29034  df-upgr 29058  df-umgr 29059  df-uspgr 29126  df-usgr 29127  df-fusgr 29293
This theorem is referenced by:  fusgrfupgrfs  29307  nbfiusgrfi  29351  cusgrsizeindslem  29428  cusgrsizeinds  29429  sizusglecusglem2  29439  vtxdgfusgrf  29474  numclwwlk1  30336  clnbfiusgrfi  47874
  Copyright terms: Public domain W3C validator