MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrfis Structured version   Visualization version   GIF version

Theorem fusgrfis 27600
Description: A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Assertion
Ref Expression
fusgrfis (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)

Proof of Theorem fusgrfis
Dummy variables 𝑒 𝑓 𝑛 𝑝 𝑞 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21isfusgr 27588 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin))
3 usgrop 27436 . . . 4 (𝐺 ∈ USGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ USGraph)
4 fvex 6769 . . . . 5 (iEdg‘𝐺) ∈ V
5 mptresid 5947 . . . . . 6 ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) = (𝑞 ∈ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} ↦ 𝑞)
6 fvex 6769 . . . . . . 7 (Edg‘⟨𝑣, 𝑒⟩) ∈ V
76mptrabex 7083 . . . . . 6 (𝑞 ∈ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} ↦ 𝑞) ∈ V
85, 7eqeltri 2835 . . . . 5 ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ V
9 eleq1 2826 . . . . . 6 (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
109adantl 481 . . . . 5 ((𝑣 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
11 eleq1 2826 . . . . . 6 (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
1211adantl 481 . . . . 5 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
13 vex 3426 . . . . . . . 8 𝑣 ∈ V
14 vex 3426 . . . . . . . 8 𝑒 ∈ V
1513, 14opvtxfvi 27282 . . . . . . 7 (Vtx‘⟨𝑣, 𝑒⟩) = 𝑣
1615eqcomi 2747 . . . . . 6 𝑣 = (Vtx‘⟨𝑣, 𝑒⟩)
17 eqid 2738 . . . . . 6 (Edg‘⟨𝑣, 𝑒⟩) = (Edg‘⟨𝑣, 𝑒⟩)
18 eqid 2738 . . . . . 6 {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} = {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}
19 eqid 2738 . . . . . 6 ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩ = ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩
2016, 17, 18, 19usgrres1 27585 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩ ∈ USGraph)
21 eleq1 2826 . . . . . 6 (𝑓 = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin))
2221adantl 481 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin))
2313, 14pm3.2i 470 . . . . . 6 (𝑣 ∈ V ∧ 𝑒 ∈ V)
24 fusgrfisbase 27598 . . . . . 6 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = 0) → 𝑒 ∈ Fin)
2523, 24mp3an1 1446 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = 0) → 𝑒 ∈ Fin)
26 simpl 482 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → (𝑣 ∈ V ∧ 𝑒 ∈ V))
27 simprr1 1219 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ⟨𝑣, 𝑒⟩ ∈ USGraph)
28 eleq1 2826 . . . . . . . . . . . . . 14 ((♯‘𝑣) = (𝑦 + 1) → ((♯‘𝑣) ∈ ℕ0 ↔ (𝑦 + 1) ∈ ℕ0))
29 hashclb 14001 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ V → (𝑣 ∈ Fin ↔ (♯‘𝑣) ∈ ℕ0))
3029biimprd 247 . . . . . . . . . . . . . . . 16 (𝑣 ∈ V → ((♯‘𝑣) ∈ ℕ0𝑣 ∈ Fin))
3130adantr 480 . . . . . . . . . . . . . . 15 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → ((♯‘𝑣) ∈ ℕ0𝑣 ∈ Fin))
3231com12 32 . . . . . . . . . . . . . 14 ((♯‘𝑣) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))
3328, 32syl6bir 253 . . . . . . . . . . . . 13 ((♯‘𝑣) = (𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)))
34333ad2ant2 1132 . . . . . . . . . . . 12 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) → ((𝑦 + 1) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)))
3534impcom 407 . . . . . . . . . . 11 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))
3635impcom 407 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → 𝑣 ∈ Fin)
37 opfusgr 27593 . . . . . . . . . . 11 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (⟨𝑣, 𝑒⟩ ∈ FinUSGraph ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑣 ∈ Fin)))
3837adantr 480 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → (⟨𝑣, 𝑒⟩ ∈ FinUSGraph ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑣 ∈ Fin)))
3927, 36, 38mpbir2and 709 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ⟨𝑣, 𝑒⟩ ∈ FinUSGraph)
40 simprr3 1221 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → 𝑛𝑣)
4126, 39, 403jca 1126 . . . . . . . 8 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣))
4223, 41mpan 686 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣))
43 fusgrfisstep 27599 . . . . . . 7 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin → 𝑒 ∈ Fin))
4442, 43syl 17 . . . . . 6 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin → 𝑒 ∈ Fin))
4544imp 406 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin) → 𝑒 ∈ Fin)
464, 8, 10, 12, 20, 22, 25, 45opfi1ind 14144 . . . 4 ((⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (iEdg‘𝐺) ∈ Fin)
473, 46sylan 579 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (iEdg‘𝐺) ∈ Fin)
48 eqid 2738 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
49 eqid 2738 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
5048, 49usgredgffibi 27594 . . . 4 (𝐺 ∈ USGraph → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
5150adantr 480 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
5247, 51mpbird 256 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (Edg‘𝐺) ∈ Fin)
532, 52sylbi 216 1 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wnel 3048  {crab 3067  Vcvv 3422  cdif 3880  {csn 4558  cop 4564  cmpt 5153   I cid 5479  cres 5582  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  1c1 10803   + caddc 10805  0cn0 12163  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  USGraphcusgr 27422  FinUSGraphcfusgr 27586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-vtx 27271  df-iedg 27272  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-fusgr 27587
This theorem is referenced by:  fusgrfupgrfs  27601  nbfiusgrfi  27645  cusgrsizeindslem  27721  cusgrsizeinds  27722  sizusglecusglem2  27732  vtxdgfusgrf  27767  numclwwlk1  28626
  Copyright terms: Public domain W3C validator