MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrfis Structured version   Visualization version   GIF version

Theorem fusgrfis 28855
Description: A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Assertion
Ref Expression
fusgrfis (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)

Proof of Theorem fusgrfis
Dummy variables 𝑒 𝑓 𝑛 𝑝 𝑞 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21isfusgr 28843 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin))
3 usgrop 28691 . . . 4 (𝐺 ∈ USGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ USGraph)
4 fvex 6904 . . . . 5 (iEdg‘𝐺) ∈ V
5 mptresid 6050 . . . . . 6 ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) = (𝑞 ∈ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} ↦ 𝑞)
6 fvex 6904 . . . . . . 7 (Edg‘⟨𝑣, 𝑒⟩) ∈ V
76mptrabex 7229 . . . . . 6 (𝑞 ∈ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} ↦ 𝑞) ∈ V
85, 7eqeltri 2828 . . . . 5 ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ V
9 eleq1 2820 . . . . . 6 (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
109adantl 481 . . . . 5 ((𝑣 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
11 eleq1 2820 . . . . . 6 (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
1211adantl 481 . . . . 5 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
13 vex 3477 . . . . . . . 8 𝑣 ∈ V
14 vex 3477 . . . . . . . 8 𝑒 ∈ V
1513, 14opvtxfvi 28537 . . . . . . 7 (Vtx‘⟨𝑣, 𝑒⟩) = 𝑣
1615eqcomi 2740 . . . . . 6 𝑣 = (Vtx‘⟨𝑣, 𝑒⟩)
17 eqid 2731 . . . . . 6 (Edg‘⟨𝑣, 𝑒⟩) = (Edg‘⟨𝑣, 𝑒⟩)
18 eqid 2731 . . . . . 6 {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} = {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}
19 eqid 2731 . . . . . 6 ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩ = ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩
2016, 17, 18, 19usgrres1 28840 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩ ∈ USGraph)
21 eleq1 2820 . . . . . 6 (𝑓 = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin))
2221adantl 481 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin))
2313, 14pm3.2i 470 . . . . . 6 (𝑣 ∈ V ∧ 𝑒 ∈ V)
24 fusgrfisbase 28853 . . . . . 6 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = 0) → 𝑒 ∈ Fin)
2523, 24mp3an1 1447 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = 0) → 𝑒 ∈ Fin)
26 simpl 482 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → (𝑣 ∈ V ∧ 𝑒 ∈ V))
27 simprr1 1220 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ⟨𝑣, 𝑒⟩ ∈ USGraph)
28 eleq1 2820 . . . . . . . . . . . . . 14 ((♯‘𝑣) = (𝑦 + 1) → ((♯‘𝑣) ∈ ℕ0 ↔ (𝑦 + 1) ∈ ℕ0))
29 hashclb 14323 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ V → (𝑣 ∈ Fin ↔ (♯‘𝑣) ∈ ℕ0))
3029biimprd 247 . . . . . . . . . . . . . . . 16 (𝑣 ∈ V → ((♯‘𝑣) ∈ ℕ0𝑣 ∈ Fin))
3130adantr 480 . . . . . . . . . . . . . . 15 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → ((♯‘𝑣) ∈ ℕ0𝑣 ∈ Fin))
3231com12 32 . . . . . . . . . . . . . 14 ((♯‘𝑣) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))
3328, 32syl6bir 254 . . . . . . . . . . . . 13 ((♯‘𝑣) = (𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)))
34333ad2ant2 1133 . . . . . . . . . . . 12 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) → ((𝑦 + 1) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)))
3534impcom 407 . . . . . . . . . . 11 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))
3635impcom 407 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → 𝑣 ∈ Fin)
37 opfusgr 28848 . . . . . . . . . . 11 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (⟨𝑣, 𝑒⟩ ∈ FinUSGraph ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑣 ∈ Fin)))
3837adantr 480 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → (⟨𝑣, 𝑒⟩ ∈ FinUSGraph ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑣 ∈ Fin)))
3927, 36, 38mpbir2and 710 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ⟨𝑣, 𝑒⟩ ∈ FinUSGraph)
40 simprr3 1222 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → 𝑛𝑣)
4126, 39, 403jca 1127 . . . . . . . 8 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣))
4223, 41mpan 687 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣))
43 fusgrfisstep 28854 . . . . . . 7 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin → 𝑒 ∈ Fin))
4442, 43syl 17 . . . . . 6 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin → 𝑒 ∈ Fin))
4544imp 406 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin) → 𝑒 ∈ Fin)
464, 8, 10, 12, 20, 22, 25, 45opfi1ind 14468 . . . 4 ((⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (iEdg‘𝐺) ∈ Fin)
473, 46sylan 579 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (iEdg‘𝐺) ∈ Fin)
48 eqid 2731 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
49 eqid 2731 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
5048, 49usgredgffibi 28849 . . . 4 (𝐺 ∈ USGraph → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
5150adantr 480 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
5247, 51mpbird 257 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (Edg‘𝐺) ∈ Fin)
532, 52sylbi 216 1 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wnel 3045  {crab 3431  Vcvv 3473  cdif 3945  {csn 4628  cop 4634  cmpt 5231   I cid 5573  cres 5678  cfv 6543  (class class class)co 7412  Fincfn 8943  0cc0 11114  1c1 11115   + caddc 11117  0cn0 12477  chash 14295  Vtxcvtx 28524  iEdgciedg 28525  Edgcedg 28575  USGraphcusgr 28677  FinUSGraphcfusgr 28841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-fz 13490  df-hash 14296  df-vtx 28526  df-iedg 28527  df-edg 28576  df-uhgr 28586  df-upgr 28610  df-umgr 28611  df-uspgr 28678  df-usgr 28679  df-fusgr 28842
This theorem is referenced by:  fusgrfupgrfs  28856  nbfiusgrfi  28900  cusgrsizeindslem  28976  cusgrsizeinds  28977  sizusglecusglem2  28987  vtxdgfusgrf  29022  numclwwlk1  29882
  Copyright terms: Public domain W3C validator