Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | 1 | isfusgr 27685 |
. 2
⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧
(Vtx‘𝐺) ∈
Fin)) |
3 | | usgrop 27533 |
. . . 4
⊢ (𝐺 ∈ USGraph →
〈(Vtx‘𝐺),
(iEdg‘𝐺)〉 ∈
USGraph) |
4 | | fvex 6787 |
. . . . 5
⊢
(iEdg‘𝐺)
∈ V |
5 | | mptresid 5958 |
. . . . . 6
⊢ ( I
↾ {𝑝 ∈
(Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝}) = (𝑞 ∈ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝} ↦ 𝑞) |
6 | | fvex 6787 |
. . . . . . 7
⊢
(Edg‘〈𝑣,
𝑒〉) ∈
V |
7 | 6 | mptrabex 7101 |
. . . . . 6
⊢ (𝑞 ∈ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝} ↦ 𝑞) ∈ V |
8 | 5, 7 | eqeltri 2835 |
. . . . 5
⊢ ( I
↾ {𝑝 ∈
(Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝}) ∈ V |
9 | | eleq1 2826 |
. . . . . 6
⊢ (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)) |
10 | 9 | adantl 482 |
. . . . 5
⊢ ((𝑣 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)) |
11 | | eleq1 2826 |
. . . . . 6
⊢ (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin)) |
12 | 11 | adantl 482 |
. . . . 5
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin)) |
13 | | vex 3436 |
. . . . . . . 8
⊢ 𝑣 ∈ V |
14 | | vex 3436 |
. . . . . . . 8
⊢ 𝑒 ∈ V |
15 | 13, 14 | opvtxfvi 27379 |
. . . . . . 7
⊢
(Vtx‘〈𝑣,
𝑒〉) = 𝑣 |
16 | 15 | eqcomi 2747 |
. . . . . 6
⊢ 𝑣 = (Vtx‘〈𝑣, 𝑒〉) |
17 | | eqid 2738 |
. . . . . 6
⊢
(Edg‘〈𝑣,
𝑒〉) =
(Edg‘〈𝑣, 𝑒〉) |
18 | | eqid 2738 |
. . . . . 6
⊢ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝} = {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝} |
19 | | eqid 2738 |
. . . . . 6
⊢
〈(𝑣 ∖
{𝑛}), ( I ↾ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝})〉 = 〈(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝})〉 |
20 | 16, 17, 18, 19 | usgrres1 27682 |
. . . . 5
⊢
((〈𝑣, 𝑒〉 ∈ USGraph ∧
𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝})〉 ∈ USGraph) |
21 | | eleq1 2826 |
. . . . . 6
⊢ (𝑓 = ( I ↾ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝}) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝}) ∈ Fin)) |
22 | 21 | adantl 482 |
. . . . 5
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝})) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝}) ∈ Fin)) |
23 | 13, 14 | pm3.2i 471 |
. . . . . 6
⊢ (𝑣 ∈ V ∧ 𝑒 ∈ V) |
24 | | fusgrfisbase 27695 |
. . . . . 6
⊢ (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ 〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = 0)
→ 𝑒 ∈
Fin) |
25 | 23, 24 | mp3an1 1447 |
. . . . 5
⊢
((〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = 0)
→ 𝑒 ∈
Fin) |
26 | | simpl 483 |
. . . . . . . . 9
⊢ (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) → (𝑣 ∈ V ∧ 𝑒 ∈ V)) |
27 | | simprr1 1220 |
. . . . . . . . . 10
⊢ (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) → 〈𝑣, 𝑒〉 ∈ USGraph) |
28 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑣) =
(𝑦 + 1) →
((♯‘𝑣) ∈
ℕ0 ↔ (𝑦 + 1) ∈
ℕ0)) |
29 | | hashclb 14073 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ V → (𝑣 ∈ Fin ↔
(♯‘𝑣) ∈
ℕ0)) |
30 | 29 | biimprd 247 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ V →
((♯‘𝑣) ∈
ℕ0 → 𝑣 ∈ Fin)) |
31 | 30 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ V ∧ 𝑒 ∈ V) →
((♯‘𝑣) ∈
ℕ0 → 𝑣 ∈ Fin)) |
32 | 31 | com12 32 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑣)
∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)) |
33 | 28, 32 | syl6bir 253 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑣) =
(𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0
→ ((𝑣 ∈ V ∧
𝑒 ∈ V) → 𝑣 ∈ Fin))) |
34 | 33 | 3ad2ant2 1133 |
. . . . . . . . . . . 12
⊢
((〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) → ((𝑦 + 1) ∈ ℕ0 →
((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))) |
35 | 34 | impcom 408 |
. . . . . . . . . . 11
⊢ (((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)) |
36 | 35 | impcom 408 |
. . . . . . . . . 10
⊢ (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) → 𝑣 ∈ Fin) |
37 | | opfusgr 27690 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (〈𝑣, 𝑒〉 ∈ FinUSGraph ↔ (〈𝑣, 𝑒〉 ∈ USGraph ∧ 𝑣 ∈ Fin))) |
38 | 37 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) → (〈𝑣, 𝑒〉 ∈ FinUSGraph ↔ (〈𝑣, 𝑒〉 ∈ USGraph ∧ 𝑣 ∈ Fin))) |
39 | 27, 36, 38 | mpbir2and 710 |
. . . . . . . . 9
⊢ (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) → 〈𝑣, 𝑒〉 ∈ FinUSGraph) |
40 | | simprr3 1222 |
. . . . . . . . 9
⊢ (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) → 𝑛 ∈ 𝑣) |
41 | 26, 39, 40 | 3jca 1127 |
. . . . . . . 8
⊢ (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ 〈𝑣, 𝑒〉 ∈ FinUSGraph ∧ 𝑛 ∈ 𝑣)) |
42 | 23, 41 | mpan 687 |
. . . . . . 7
⊢ (((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ 〈𝑣, 𝑒〉 ∈ FinUSGraph ∧ 𝑛 ∈ 𝑣)) |
43 | | fusgrfisstep 27696 |
. . . . . . 7
⊢ (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ 〈𝑣, 𝑒〉 ∈ FinUSGraph ∧ 𝑛 ∈ 𝑣) → (( I ↾ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝}) ∈ Fin → 𝑒 ∈ Fin)) |
44 | 42, 43 | syl 17 |
. . . . . 6
⊢ (((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) → (( I ↾ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝}) ∈ Fin → 𝑒 ∈ Fin)) |
45 | 44 | imp 407 |
. . . . 5
⊢ ((((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ USGraph ∧
(♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ ( I ↾ {𝑝 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑝}) ∈ Fin) → 𝑒 ∈ Fin) |
46 | 4, 8, 10, 12, 20, 22, 25, 45 | opfi1ind 14216 |
. . . 4
⊢
((〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ USGraph ∧
(Vtx‘𝐺) ∈ Fin)
→ (iEdg‘𝐺)
∈ Fin) |
47 | 3, 46 | sylan 580 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧
(Vtx‘𝐺) ∈ Fin)
→ (iEdg‘𝐺)
∈ Fin) |
48 | | eqid 2738 |
. . . . 5
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
49 | | eqid 2738 |
. . . . 5
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
50 | 48, 49 | usgredgffibi 27691 |
. . . 4
⊢ (𝐺 ∈ USGraph →
((Edg‘𝐺) ∈ Fin
↔ (iEdg‘𝐺)
∈ Fin)) |
51 | 50 | adantr 481 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧
(Vtx‘𝐺) ∈ Fin)
→ ((Edg‘𝐺)
∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)) |
52 | 47, 51 | mpbird 256 |
. 2
⊢ ((𝐺 ∈ USGraph ∧
(Vtx‘𝐺) ∈ Fin)
→ (Edg‘𝐺) ∈
Fin) |
53 | 2, 52 | sylbi 216 |
1
⊢ (𝐺 ∈ FinUSGraph →
(Edg‘𝐺) ∈
Fin) |