MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrfis Structured version   Visualization version   GIF version

Theorem fusgrfis 27120
Description: A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Assertion
Ref Expression
fusgrfis (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)

Proof of Theorem fusgrfis
Dummy variables 𝑒 𝑓 𝑛 𝑝 𝑞 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21isfusgr 27108 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin))
3 usgrop 26956 . . . 4 (𝐺 ∈ USGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ USGraph)
4 fvex 6658 . . . . 5 (iEdg‘𝐺) ∈ V
5 mptresid 5885 . . . . . 6 ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) = (𝑞 ∈ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} ↦ 𝑞)
6 fvex 6658 . . . . . . 7 (Edg‘⟨𝑣, 𝑒⟩) ∈ V
76mptrabex 6965 . . . . . 6 (𝑞 ∈ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} ↦ 𝑞) ∈ V
85, 7eqeltri 2886 . . . . 5 ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ V
9 eleq1 2877 . . . . . 6 (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
109adantl 485 . . . . 5 ((𝑣 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
11 eleq1 2877 . . . . . 6 (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
1211adantl 485 . . . . 5 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
13 vex 3444 . . . . . . . 8 𝑣 ∈ V
14 vex 3444 . . . . . . . 8 𝑒 ∈ V
1513, 14opvtxfvi 26802 . . . . . . 7 (Vtx‘⟨𝑣, 𝑒⟩) = 𝑣
1615eqcomi 2807 . . . . . 6 𝑣 = (Vtx‘⟨𝑣, 𝑒⟩)
17 eqid 2798 . . . . . 6 (Edg‘⟨𝑣, 𝑒⟩) = (Edg‘⟨𝑣, 𝑒⟩)
18 eqid 2798 . . . . . 6 {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} = {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}
19 eqid 2798 . . . . . 6 ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩ = ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩
2016, 17, 18, 19usgrres1 27105 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩ ∈ USGraph)
21 eleq1 2877 . . . . . 6 (𝑓 = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin))
2221adantl 485 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin))
2313, 14pm3.2i 474 . . . . . 6 (𝑣 ∈ V ∧ 𝑒 ∈ V)
24 fusgrfisbase 27118 . . . . . 6 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = 0) → 𝑒 ∈ Fin)
2523, 24mp3an1 1445 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = 0) → 𝑒 ∈ Fin)
26 simpl 486 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → (𝑣 ∈ V ∧ 𝑒 ∈ V))
27 simprr1 1218 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ⟨𝑣, 𝑒⟩ ∈ USGraph)
28 eleq1 2877 . . . . . . . . . . . . . 14 ((♯‘𝑣) = (𝑦 + 1) → ((♯‘𝑣) ∈ ℕ0 ↔ (𝑦 + 1) ∈ ℕ0))
29 hashclb 13715 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ V → (𝑣 ∈ Fin ↔ (♯‘𝑣) ∈ ℕ0))
3029biimprd 251 . . . . . . . . . . . . . . . 16 (𝑣 ∈ V → ((♯‘𝑣) ∈ ℕ0𝑣 ∈ Fin))
3130adantr 484 . . . . . . . . . . . . . . 15 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → ((♯‘𝑣) ∈ ℕ0𝑣 ∈ Fin))
3231com12 32 . . . . . . . . . . . . . 14 ((♯‘𝑣) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))
3328, 32syl6bir 257 . . . . . . . . . . . . 13 ((♯‘𝑣) = (𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)))
34333ad2ant2 1131 . . . . . . . . . . . 12 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) → ((𝑦 + 1) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)))
3534impcom 411 . . . . . . . . . . 11 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))
3635impcom 411 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → 𝑣 ∈ Fin)
37 opfusgr 27113 . . . . . . . . . . 11 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (⟨𝑣, 𝑒⟩ ∈ FinUSGraph ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑣 ∈ Fin)))
3837adantr 484 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → (⟨𝑣, 𝑒⟩ ∈ FinUSGraph ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑣 ∈ Fin)))
3927, 36, 38mpbir2and 712 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ⟨𝑣, 𝑒⟩ ∈ FinUSGraph)
40 simprr3 1220 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → 𝑛𝑣)
4126, 39, 403jca 1125 . . . . . . . 8 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣))
4223, 41mpan 689 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣))
43 fusgrfisstep 27119 . . . . . . 7 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin → 𝑒 ∈ Fin))
4442, 43syl 17 . . . . . 6 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin → 𝑒 ∈ Fin))
4544imp 410 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin) → 𝑒 ∈ Fin)
464, 8, 10, 12, 20, 22, 25, 45opfi1ind 13856 . . . 4 ((⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (iEdg‘𝐺) ∈ Fin)
473, 46sylan 583 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (iEdg‘𝐺) ∈ Fin)
48 eqid 2798 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
49 eqid 2798 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
5048, 49usgredgffibi 27114 . . . 4 (𝐺 ∈ USGraph → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
5150adantr 484 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
5247, 51mpbird 260 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (Edg‘𝐺) ∈ Fin)
532, 52sylbi 220 1 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wnel 3091  {crab 3110  Vcvv 3441  cdif 3878  {csn 4525  cop 4531  cmpt 5110   I cid 5424  cres 5521  cfv 6324  (class class class)co 7135  Fincfn 8492  0cc0 10526  1c1 10527   + caddc 10529  0cn0 11885  chash 13686  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840  USGraphcusgr 26942  FinUSGraphcfusgr 27106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-vtx 26791  df-iedg 26792  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-umgr 26876  df-uspgr 26943  df-usgr 26944  df-fusgr 27107
This theorem is referenced by:  fusgrfupgrfs  27121  nbfiusgrfi  27165  cusgrsizeindslem  27241  cusgrsizeinds  27242  sizusglecusglem2  27252  vtxdgfusgrf  27287  numclwwlk1  28146
  Copyright terms: Public domain W3C validator