MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrusgrord0lem Structured version   Visualization version   GIF version

Theorem frrusgrord0lem 30319
Description: Lemma for frrusgrord0 30320. (Contributed by AV, 12-Jan-2022.)
Hypothesis
Ref Expression
frrusgrord0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frrusgrord0lem (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑣,𝑉

Proof of Theorem frrusgrord0lem
StepHypRef Expression
1 frgrusgr 30241 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
21anim1i 615 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
3 frrusgrord0.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
43isfusgr 29299 . . . . . 6 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
52, 4sylibr 234 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
6 eqid 2729 . . . . . 6 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
73, 6fusgrregdegfi 29551 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾𝐾 ∈ ℕ0))
85, 7stoic3 1776 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾𝐾 ∈ ℕ0))
98imp 406 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0)
109nn0cnd 12483 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℂ)
11 hashcl 14299 . . . . 5 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
1211nn0cnd 12483 . . . 4 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℂ)
13123ad2ant2 1134 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℂ)
1413adantr 480 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘𝑉) ∈ ℂ)
15 hasheq0 14306 . . . . . . 7 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
1615biimpd 229 . . . . . 6 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 → 𝑉 = ∅))
1716necon3d 2946 . . . . 5 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (♯‘𝑉) ≠ 0))
1817imp 406 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (♯‘𝑉) ≠ 0)
19183adant1 1130 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (♯‘𝑉) ≠ 0)
2019adantr 480 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘𝑉) ≠ 0)
2110, 14, 203jca 1128 1 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4292  cfv 6499  Fincfn 8895  cc 11044  0cc0 11046  0cn0 12420  chash 14273  Vtxcvtx 28977  USGraphcusgr 29130  FinUSGraphcfusgr 29297  VtxDegcvtxdg 29447   FriendGraph cfrgr 30238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-n0 12421  df-xnn0 12494  df-z 12508  df-uz 12772  df-xadd 13051  df-fz 13447  df-hash 14274  df-vtx 28979  df-iedg 28980  df-edg 29029  df-uhgr 29039  df-upgr 29063  df-umgr 29064  df-uspgr 29131  df-usgr 29132  df-fusgr 29298  df-vtxdg 29448  df-frgr 30239
This theorem is referenced by:  frrusgrord0  30320
  Copyright terms: Public domain W3C validator