![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frrusgrord0lem | Structured version Visualization version GIF version |
Description: Lemma for frrusgrord0 30189. (Contributed by AV, 12-Jan-2022.) |
Ref | Expression |
---|---|
frrusgrord0.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
frrusgrord0lem | β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β ) β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (πΎ β β β§ (β―βπ) β β β§ (β―βπ) β 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrusgr 30110 | . . . . . . 7 β’ (πΊ β FriendGraph β πΊ β USGraph) | |
2 | 1 | anim1i 613 | . . . . . 6 β’ ((πΊ β FriendGraph β§ π β Fin) β (πΊ β USGraph β§ π β Fin)) |
3 | frrusgrord0.v | . . . . . . 7 β’ π = (VtxβπΊ) | |
4 | 3 | isfusgr 29170 | . . . . . 6 β’ (πΊ β FinUSGraph β (πΊ β USGraph β§ π β Fin)) |
5 | 2, 4 | sylibr 233 | . . . . 5 β’ ((πΊ β FriendGraph β§ π β Fin) β πΊ β FinUSGraph) |
6 | eqid 2725 | . . . . . 6 β’ (VtxDegβπΊ) = (VtxDegβπΊ) | |
7 | 3, 6 | fusgrregdegfi 29422 | . . . . 5 β’ ((πΊ β FinUSGraph β§ π β β ) β (βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ β πΎ β β0)) |
8 | 5, 7 | stoic3 1770 | . . . 4 β’ ((πΊ β FriendGraph β§ π β Fin β§ π β β ) β (βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ β πΎ β β0)) |
9 | 8 | imp 405 | . . 3 β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β ) β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β πΎ β β0) |
10 | 9 | nn0cnd 12559 | . 2 β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β ) β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β πΎ β β) |
11 | hashcl 14342 | . . . . 5 β’ (π β Fin β (β―βπ) β β0) | |
12 | 11 | nn0cnd 12559 | . . . 4 β’ (π β Fin β (β―βπ) β β) |
13 | 12 | 3ad2ant2 1131 | . . 3 β’ ((πΊ β FriendGraph β§ π β Fin β§ π β β ) β (β―βπ) β β) |
14 | 13 | adantr 479 | . 2 β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β ) β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (β―βπ) β β) |
15 | hasheq0 14349 | . . . . . . 7 β’ (π β Fin β ((β―βπ) = 0 β π = β )) | |
16 | 15 | biimpd 228 | . . . . . 6 β’ (π β Fin β ((β―βπ) = 0 β π = β )) |
17 | 16 | necon3d 2951 | . . . . 5 β’ (π β Fin β (π β β β (β―βπ) β 0)) |
18 | 17 | imp 405 | . . . 4 β’ ((π β Fin β§ π β β ) β (β―βπ) β 0) |
19 | 18 | 3adant1 1127 | . . 3 β’ ((πΊ β FriendGraph β§ π β Fin β§ π β β ) β (β―βπ) β 0) |
20 | 19 | adantr 479 | . 2 β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β ) β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (β―βπ) β 0) |
21 | 10, 14, 20 | 3jca 1125 | 1 β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β ) β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (πΎ β β β§ (β―βπ) β β β§ (β―βπ) β 0)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 βwral 3051 β c0 4319 βcfv 6543 Fincfn 8957 βcc 11131 0cc0 11133 β0cn0 12497 β―chash 14316 Vtxcvtx 28848 USGraphcusgr 29001 FinUSGraphcfusgr 29168 VtxDegcvtxdg 29318 FriendGraph cfrgr 30107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-xadd 13120 df-fz 13512 df-hash 14317 df-vtx 28850 df-iedg 28851 df-edg 28900 df-uhgr 28910 df-upgr 28934 df-umgr 28935 df-uspgr 29002 df-usgr 29003 df-fusgr 29169 df-vtxdg 29319 df-frgr 30108 |
This theorem is referenced by: frrusgrord0 30189 |
Copyright terms: Public domain | W3C validator |