Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frrusgrord0lem | Structured version Visualization version GIF version |
Description: Lemma for frrusgrord0 28683. (Contributed by AV, 12-Jan-2022.) |
Ref | Expression |
---|---|
frrusgrord0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
frrusgrord0lem | ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrusgr 28604 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
2 | 1 | anim1i 614 | . . . . . 6 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | frrusgrord0.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | isfusgr 27666 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
5 | 2, 4 | sylibr 233 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
6 | eqid 2739 | . . . . . 6 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
7 | 3, 6 | fusgrregdegfi 27917 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) |
8 | 5, 7 | stoic3 1782 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) |
9 | 8 | imp 406 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0) |
10 | 9 | nn0cnd 12278 | . 2 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℂ) |
11 | hashcl 14052 | . . . . 5 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
12 | 11 | nn0cnd 12278 | . . . 4 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℂ) |
13 | 12 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℂ) |
14 | 13 | adantr 480 | . 2 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘𝑉) ∈ ℂ) |
15 | hasheq0 14059 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅)) | |
16 | 15 | biimpd 228 | . . . . . 6 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 0 → 𝑉 = ∅)) |
17 | 16 | necon3d 2965 | . . . . 5 ⊢ (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (♯‘𝑉) ≠ 0)) |
18 | 17 | imp 406 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (♯‘𝑉) ≠ 0) |
19 | 18 | 3adant1 1128 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (♯‘𝑉) ≠ 0) |
20 | 19 | adantr 480 | . 2 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘𝑉) ≠ 0) |
21 | 10, 14, 20 | 3jca 1126 | 1 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∅c0 4261 ‘cfv 6430 Fincfn 8707 ℂcc 10853 0cc0 10855 ℕ0cn0 12216 ♯chash 14025 Vtxcvtx 27347 USGraphcusgr 27500 FinUSGraphcfusgr 27664 VtxDegcvtxdg 27813 FriendGraph cfrgr 28601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-oadd 8285 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-xadd 12831 df-fz 13222 df-hash 14026 df-vtx 27349 df-iedg 27350 df-edg 27399 df-uhgr 27409 df-upgr 27433 df-umgr 27434 df-uspgr 27501 df-usgr 27502 df-fusgr 27665 df-vtxdg 27814 df-frgr 28602 |
This theorem is referenced by: frrusgrord0 28683 |
Copyright terms: Public domain | W3C validator |