![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrmaxsize | Structured version Visualization version GIF version |
Description: The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.) |
Ref | Expression |
---|---|
fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
fusgrmaxsize | ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrmaxsize.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | isfusgr 29355 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | cusgrexg 29481 | . . . 4 ⊢ (𝑉 ∈ Fin → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) |
5 | fusgrmaxsize.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1 | fvexi 6936 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
7 | vex 3492 | . . . . . . . 8 ⊢ 𝑒 ∈ V | |
8 | 6, 7 | opvtxfvi 29046 | . . . . . . 7 ⊢ (Vtx‘〈𝑉, 𝑒〉) = 𝑉 |
9 | 8 | eqcomi 2749 | . . . . . 6 ⊢ 𝑉 = (Vtx‘〈𝑉, 𝑒〉) |
10 | eqid 2740 | . . . . . 6 ⊢ (Edg‘〈𝑉, 𝑒〉) = (Edg‘〈𝑉, 𝑒〉) | |
11 | 1, 5, 9, 10 | sizusglecusg 29501 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉))) |
12 | 11 | adantlr 714 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉))) |
13 | 9, 10 | cusgrsize 29492 | . . . . . . . 8 ⊢ ((〈𝑉, 𝑒〉 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2)) |
14 | breq2 5170 | . . . . . . . . 9 ⊢ ((♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) ↔ (♯‘𝐸) ≤ ((♯‘𝑉)C2))) | |
15 | 14 | biimpd 229 | . . . . . . . 8 ⊢ ((♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
16 | 13, 15 | syl 17 | . . . . . . 7 ⊢ ((〈𝑉, 𝑒〉 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
17 | 16 | expcom 413 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (〈𝑉, 𝑒〉 ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) |
18 | 17 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (〈𝑉, 𝑒〉 ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) |
19 | 18 | imp 406 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
20 | 12, 19 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
21 | 4, 20 | exlimddv 1934 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
22 | 2, 21 | sylbi 217 | 1 ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ‘cfv 6575 (class class class)co 7450 Fincfn 9005 ≤ cle 11327 2c2 12350 Ccbc 14353 ♯chash 14381 Vtxcvtx 29033 Edgcedg 29084 USGraphcusgr 29186 FinUSGraphcfusgr 29353 ComplUSGraphccusgr 29447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-oadd 8528 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-dju 9972 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-n0 12556 df-xnn0 12628 df-z 12642 df-uz 12906 df-rp 13060 df-fz 13570 df-seq 14055 df-fac 14325 df-bc 14354 df-hash 14382 df-vtx 29035 df-iedg 29036 df-edg 29085 df-uhgr 29095 df-upgr 29119 df-umgr 29120 df-uspgr 29187 df-usgr 29188 df-fusgr 29354 df-nbgr 29370 df-uvtx 29423 df-cplgr 29448 df-cusgr 29449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |