MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrmaxsize Structured version   Visualization version   GIF version

Theorem fusgrmaxsize 29409
Description: The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.)
Hypotheses
Ref Expression
fusgrmaxsize.v 𝑉 = (Vtx‘𝐺)
fusgrmaxsize.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
fusgrmaxsize (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2))

Proof of Theorem fusgrmaxsize
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 fusgrmaxsize.v . . 3 𝑉 = (Vtx‘𝐺)
21isfusgr 29262 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
3 cusgrexg 29388 . . . 4 (𝑉 ∈ Fin → ∃𝑒𝑉, 𝑒⟩ ∈ ComplUSGraph)
43adantl 481 . . 3 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → ∃𝑒𝑉, 𝑒⟩ ∈ ComplUSGraph)
5 fusgrmaxsize.e . . . . . 6 𝐸 = (Edg‘𝐺)
61fvexi 6899 . . . . . . . 8 𝑉 ∈ V
7 vex 3467 . . . . . . . 8 𝑒 ∈ V
86, 7opvtxfvi 28953 . . . . . . 7 (Vtx‘⟨𝑉, 𝑒⟩) = 𝑉
98eqcomi 2743 . . . . . 6 𝑉 = (Vtx‘⟨𝑉, 𝑒⟩)
10 eqid 2734 . . . . . 6 (Edg‘⟨𝑉, 𝑒⟩) = (Edg‘⟨𝑉, 𝑒⟩)
111, 5, 9, 10sizusglecusg 29408 . . . . 5 ((𝐺 ∈ USGraph ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)))
1211adantlr 715 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)))
139, 10cusgrsize 29399 . . . . . . . 8 ((⟨𝑉, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2))
14 breq2 5127 . . . . . . . . 9 ((♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) ↔ (♯‘𝐸) ≤ ((♯‘𝑉)C2)))
1514biimpd 229 . . . . . . . 8 ((♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))
1613, 15syl 17 . . . . . . 7 ((⟨𝑉, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))
1716expcom 413 . . . . . 6 (𝑉 ∈ Fin → (⟨𝑉, 𝑒⟩ ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))))
1817adantl 481 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (⟨𝑉, 𝑒⟩ ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))))
1918imp 406 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))
2012, 19mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))
214, 20exlimddv 1934 . 2 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))
222, 21sylbi 217 1 (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  cop 4612   class class class wbr 5123  cfv 6540  (class class class)co 7412  Fincfn 8966  cle 11277  2c2 12302  Ccbc 14322  chash 14350  Vtxcvtx 28940  Edgcedg 28991  USGraphcusgr 29093  FinUSGraphcfusgr 29260  ComplUSGraphccusgr 29354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-n0 12509  df-xnn0 12582  df-z 12596  df-uz 12860  df-rp 13016  df-fz 13529  df-seq 14024  df-fac 14294  df-bc 14323  df-hash 14351  df-vtx 28942  df-iedg 28943  df-edg 28992  df-uhgr 29002  df-upgr 29026  df-umgr 29027  df-uspgr 29094  df-usgr 29095  df-fusgr 29261  df-nbgr 29277  df-uvtx 29330  df-cplgr 29355  df-cusgr 29356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator