| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > fusgrmaxsize | Structured version Visualization version GIF version | ||
| Description: The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) | 
| Ref | Expression | 
|---|---|
| fusgrmaxsize | ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fusgrmaxsize.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | isfusgr 29262 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) | 
| 3 | cusgrexg 29388 | . . . 4 ⊢ (𝑉 ∈ Fin → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) | 
| 5 | fusgrmaxsize.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | 1 | fvexi 6899 | . . . . . . . 8 ⊢ 𝑉 ∈ V | 
| 7 | vex 3467 | . . . . . . . 8 ⊢ 𝑒 ∈ V | |
| 8 | 6, 7 | opvtxfvi 28953 | . . . . . . 7 ⊢ (Vtx‘〈𝑉, 𝑒〉) = 𝑉 | 
| 9 | 8 | eqcomi 2743 | . . . . . 6 ⊢ 𝑉 = (Vtx‘〈𝑉, 𝑒〉) | 
| 10 | eqid 2734 | . . . . . 6 ⊢ (Edg‘〈𝑉, 𝑒〉) = (Edg‘〈𝑉, 𝑒〉) | |
| 11 | 1, 5, 9, 10 | sizusglecusg 29408 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉))) | 
| 12 | 11 | adantlr 715 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉))) | 
| 13 | 9, 10 | cusgrsize 29399 | . . . . . . . 8 ⊢ ((〈𝑉, 𝑒〉 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2)) | 
| 14 | breq2 5127 | . . . . . . . . 9 ⊢ ((♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) ↔ (♯‘𝐸) ≤ ((♯‘𝑉)C2))) | |
| 15 | 14 | biimpd 229 | . . . . . . . 8 ⊢ ((♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) | 
| 16 | 13, 15 | syl 17 | . . . . . . 7 ⊢ ((〈𝑉, 𝑒〉 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) | 
| 17 | 16 | expcom 413 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (〈𝑉, 𝑒〉 ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) | 
| 18 | 17 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (〈𝑉, 𝑒〉 ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) | 
| 19 | 18 | imp 406 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) | 
| 20 | 12, 19 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) | 
| 21 | 4, 20 | exlimddv 1934 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) | 
| 22 | 2, 21 | sylbi 217 | 1 ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 〈cop 4612 class class class wbr 5123 ‘cfv 6540 (class class class)co 7412 Fincfn 8966 ≤ cle 11277 2c2 12302 Ccbc 14322 ♯chash 14350 Vtxcvtx 28940 Edgcedg 28991 USGraphcusgr 29093 FinUSGraphcfusgr 29260 ComplUSGraphccusgr 29354 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-n0 12509 df-xnn0 12582 df-z 12596 df-uz 12860 df-rp 13016 df-fz 13529 df-seq 14024 df-fac 14294 df-bc 14323 df-hash 14351 df-vtx 28942 df-iedg 28943 df-edg 28992 df-uhgr 29002 df-upgr 29026 df-umgr 29027 df-uspgr 29094 df-usgr 29095 df-fusgr 29261 df-nbgr 29277 df-uvtx 29330 df-cplgr 29355 df-cusgr 29356 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |