![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrmaxsize | Structured version Visualization version GIF version |
Description: The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.) |
Ref | Expression |
---|---|
fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
fusgrmaxsize | ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrmaxsize.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | isfusgr 28575 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | cusgrexg 28701 | . . . 4 ⊢ (𝑉 ∈ Fin → ∃𝑒⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) | |
4 | 3 | adantl 483 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → ∃𝑒⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) |
5 | fusgrmaxsize.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1 | fvexi 6906 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
7 | vex 3479 | . . . . . . . 8 ⊢ 𝑒 ∈ V | |
8 | 6, 7 | opvtxfvi 28269 | . . . . . . 7 ⊢ (Vtx‘⟨𝑉, 𝑒⟩) = 𝑉 |
9 | 8 | eqcomi 2742 | . . . . . 6 ⊢ 𝑉 = (Vtx‘⟨𝑉, 𝑒⟩) |
10 | eqid 2733 | . . . . . 6 ⊢ (Edg‘⟨𝑉, 𝑒⟩) = (Edg‘⟨𝑉, 𝑒⟩) | |
11 | 1, 5, 9, 10 | sizusglecusg 28720 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩))) |
12 | 11 | adantlr 714 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩))) |
13 | 9, 10 | cusgrsize 28711 | . . . . . . . 8 ⊢ ((⟨𝑉, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2)) |
14 | breq2 5153 | . . . . . . . . 9 ⊢ ((♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) ↔ (♯‘𝐸) ≤ ((♯‘𝑉)C2))) | |
15 | 14 | biimpd 228 | . . . . . . . 8 ⊢ ((♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
16 | 13, 15 | syl 17 | . . . . . . 7 ⊢ ((⟨𝑉, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
17 | 16 | expcom 415 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (⟨𝑉, 𝑒⟩ ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) |
18 | 17 | adantl 483 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (⟨𝑉, 𝑒⟩ ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) |
19 | 18 | imp 408 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
20 | 12, 19 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
21 | 4, 20 | exlimddv 1939 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
22 | 2, 21 | sylbi 216 | 1 ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ⟨cop 4635 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 Fincfn 8939 ≤ cle 11249 2c2 12267 Ccbc 14262 ♯chash 14290 Vtxcvtx 28256 Edgcedg 28307 USGraphcusgr 28409 FinUSGraphcfusgr 28573 ComplUSGraphccusgr 28667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-oadd 8470 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-rp 12975 df-fz 13485 df-seq 13967 df-fac 14234 df-bc 14263 df-hash 14291 df-vtx 28258 df-iedg 28259 df-edg 28308 df-uhgr 28318 df-upgr 28342 df-umgr 28343 df-uspgr 28410 df-usgr 28411 df-fusgr 28574 df-nbgr 28590 df-uvtx 28643 df-cplgr 28668 df-cusgr 28669 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |