Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fusgrmaxsize | Structured version Visualization version GIF version |
Description: The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.) |
Ref | Expression |
---|---|
fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
fusgrmaxsize | ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrmaxsize.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | isfusgr 27588 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | cusgrexg 27714 | . . . 4 ⊢ (𝑉 ∈ Fin → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) |
5 | fusgrmaxsize.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1 | fvexi 6770 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
7 | vex 3426 | . . . . . . . 8 ⊢ 𝑒 ∈ V | |
8 | 6, 7 | opvtxfvi 27282 | . . . . . . 7 ⊢ (Vtx‘〈𝑉, 𝑒〉) = 𝑉 |
9 | 8 | eqcomi 2747 | . . . . . 6 ⊢ 𝑉 = (Vtx‘〈𝑉, 𝑒〉) |
10 | eqid 2738 | . . . . . 6 ⊢ (Edg‘〈𝑉, 𝑒〉) = (Edg‘〈𝑉, 𝑒〉) | |
11 | 1, 5, 9, 10 | sizusglecusg 27733 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉))) |
12 | 11 | adantlr 711 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉))) |
13 | 9, 10 | cusgrsize 27724 | . . . . . . . 8 ⊢ ((〈𝑉, 𝑒〉 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2)) |
14 | breq2 5074 | . . . . . . . . 9 ⊢ ((♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) ↔ (♯‘𝐸) ≤ ((♯‘𝑉)C2))) | |
15 | 14 | biimpd 228 | . . . . . . . 8 ⊢ ((♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
16 | 13, 15 | syl 17 | . . . . . . 7 ⊢ ((〈𝑉, 𝑒〉 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
17 | 16 | expcom 413 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (〈𝑉, 𝑒〉 ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) |
18 | 17 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (〈𝑉, 𝑒〉 ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) |
19 | 18 | imp 406 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
20 | 12, 19 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
21 | 4, 20 | exlimddv 1939 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
22 | 2, 21 | sylbi 216 | 1 ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ≤ cle 10941 2c2 11958 Ccbc 13944 ♯chash 13972 Vtxcvtx 27269 Edgcedg 27320 USGraphcusgr 27422 FinUSGraphcfusgr 27586 ComplUSGraphccusgr 27680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-seq 13650 df-fac 13916 df-bc 13945 df-hash 13973 df-vtx 27271 df-iedg 27272 df-edg 27321 df-uhgr 27331 df-upgr 27355 df-umgr 27356 df-uspgr 27423 df-usgr 27424 df-fusgr 27587 df-nbgr 27603 df-uvtx 27656 df-cplgr 27681 df-cusgr 27682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |