![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrmaxsize | Structured version Visualization version GIF version |
Description: The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.) |
Ref | Expression |
---|---|
fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
fusgrmaxsize | ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrmaxsize.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | isfusgr 28315 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | cusgrexg 28441 | . . . 4 ⊢ (𝑉 ∈ Fin → ∃𝑒⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) | |
4 | 3 | adantl 483 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → ∃𝑒⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) |
5 | fusgrmaxsize.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1 | fvexi 6860 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
7 | vex 3451 | . . . . . . . 8 ⊢ 𝑒 ∈ V | |
8 | 6, 7 | opvtxfvi 28009 | . . . . . . 7 ⊢ (Vtx‘⟨𝑉, 𝑒⟩) = 𝑉 |
9 | 8 | eqcomi 2742 | . . . . . 6 ⊢ 𝑉 = (Vtx‘⟨𝑉, 𝑒⟩) |
10 | eqid 2733 | . . . . . 6 ⊢ (Edg‘⟨𝑉, 𝑒⟩) = (Edg‘⟨𝑉, 𝑒⟩) | |
11 | 1, 5, 9, 10 | sizusglecusg 28460 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩))) |
12 | 11 | adantlr 714 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩))) |
13 | 9, 10 | cusgrsize 28451 | . . . . . . . 8 ⊢ ((⟨𝑉, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2)) |
14 | breq2 5113 | . . . . . . . . 9 ⊢ ((♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) ↔ (♯‘𝐸) ≤ ((♯‘𝑉)C2))) | |
15 | 14 | biimpd 228 | . . . . . . . 8 ⊢ ((♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
16 | 13, 15 | syl 17 | . . . . . . 7 ⊢ ((⟨𝑉, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
17 | 16 | expcom 415 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (⟨𝑉, 𝑒⟩ ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) |
18 | 17 | adantl 483 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (⟨𝑉, 𝑒⟩ ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) |
19 | 18 | imp 408 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
20 | 12, 19 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
21 | 4, 20 | exlimddv 1939 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
22 | 2, 21 | sylbi 216 | 1 ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ⟨cop 4596 class class class wbr 5109 ‘cfv 6500 (class class class)co 7361 Fincfn 8889 ≤ cle 11198 2c2 12216 Ccbc 14211 ♯chash 14239 Vtxcvtx 27996 Edgcedg 28047 USGraphcusgr 28149 FinUSGraphcfusgr 28313 ComplUSGraphccusgr 28407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-2o 8417 df-oadd 8420 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-dju 9845 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-2 12224 df-n0 12422 df-xnn0 12494 df-z 12508 df-uz 12772 df-rp 12924 df-fz 13434 df-seq 13916 df-fac 14183 df-bc 14212 df-hash 14240 df-vtx 27998 df-iedg 27999 df-edg 28048 df-uhgr 28058 df-upgr 28082 df-umgr 28083 df-uspgr 28150 df-usgr 28151 df-fusgr 28314 df-nbgr 28330 df-uvtx 28383 df-cplgr 28408 df-cusgr 28409 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |