MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrmaxsize Structured version   Visualization version   GIF version

Theorem fusgrmaxsize 29502
Description: The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.)
Hypotheses
Ref Expression
fusgrmaxsize.v 𝑉 = (Vtx‘𝐺)
fusgrmaxsize.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
fusgrmaxsize (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2))

Proof of Theorem fusgrmaxsize
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 fusgrmaxsize.v . . 3 𝑉 = (Vtx‘𝐺)
21isfusgr 29355 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
3 cusgrexg 29481 . . . 4 (𝑉 ∈ Fin → ∃𝑒𝑉, 𝑒⟩ ∈ ComplUSGraph)
43adantl 481 . . 3 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → ∃𝑒𝑉, 𝑒⟩ ∈ ComplUSGraph)
5 fusgrmaxsize.e . . . . . 6 𝐸 = (Edg‘𝐺)
61fvexi 6936 . . . . . . . 8 𝑉 ∈ V
7 vex 3492 . . . . . . . 8 𝑒 ∈ V
86, 7opvtxfvi 29046 . . . . . . 7 (Vtx‘⟨𝑉, 𝑒⟩) = 𝑉
98eqcomi 2749 . . . . . 6 𝑉 = (Vtx‘⟨𝑉, 𝑒⟩)
10 eqid 2740 . . . . . 6 (Edg‘⟨𝑉, 𝑒⟩) = (Edg‘⟨𝑉, 𝑒⟩)
111, 5, 9, 10sizusglecusg 29501 . . . . 5 ((𝐺 ∈ USGraph ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)))
1211adantlr 714 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)))
139, 10cusgrsize 29492 . . . . . . . 8 ((⟨𝑉, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2))
14 breq2 5170 . . . . . . . . 9 ((♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) ↔ (♯‘𝐸) ≤ ((♯‘𝑉)C2)))
1514biimpd 229 . . . . . . . 8 ((♯‘(Edg‘⟨𝑉, 𝑒⟩)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))
1613, 15syl 17 . . . . . . 7 ((⟨𝑉, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))
1716expcom 413 . . . . . 6 (𝑉 ∈ Fin → (⟨𝑉, 𝑒⟩ ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))))
1817adantl 481 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (⟨𝑉, 𝑒⟩ ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))))
1918imp 406 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → ((♯‘𝐸) ≤ (♯‘(Edg‘⟨𝑉, 𝑒⟩)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))
2012, 19mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ ⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))
214, 20exlimddv 1934 . 2 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))
222, 21sylbi 217 1 (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  cop 4654   class class class wbr 5166  cfv 6575  (class class class)co 7450  Fincfn 9005  cle 11327  2c2 12350  Ccbc 14353  chash 14381  Vtxcvtx 29033  Edgcedg 29084  USGraphcusgr 29186  FinUSGraphcfusgr 29353  ComplUSGraphccusgr 29447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-oadd 8528  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-dju 9972  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-n0 12556  df-xnn0 12628  df-z 12642  df-uz 12906  df-rp 13060  df-fz 13570  df-seq 14055  df-fac 14325  df-bc 14354  df-hash 14382  df-vtx 29035  df-iedg 29036  df-edg 29085  df-uhgr 29095  df-upgr 29119  df-umgr 29120  df-uspgr 29187  df-usgr 29188  df-fusgr 29354  df-nbgr 29370  df-uvtx 29423  df-cplgr 29448  df-cusgr 29449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator