| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrmaxsize | Structured version Visualization version GIF version | ||
| Description: The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.) |
| Ref | Expression |
|---|---|
| fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| fusgrmaxsize | ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgrmaxsize.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | isfusgr 29297 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 3 | cusgrexg 29423 | . . . 4 ⊢ (𝑉 ∈ Fin → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) |
| 5 | fusgrmaxsize.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | 1 | fvexi 6836 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
| 7 | vex 3440 | . . . . . . . 8 ⊢ 𝑒 ∈ V | |
| 8 | 6, 7 | opvtxfvi 28988 | . . . . . . 7 ⊢ (Vtx‘〈𝑉, 𝑒〉) = 𝑉 |
| 9 | 8 | eqcomi 2740 | . . . . . 6 ⊢ 𝑉 = (Vtx‘〈𝑉, 𝑒〉) |
| 10 | eqid 2731 | . . . . . 6 ⊢ (Edg‘〈𝑉, 𝑒〉) = (Edg‘〈𝑉, 𝑒〉) | |
| 11 | 1, 5, 9, 10 | sizusglecusg 29443 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉))) |
| 12 | 11 | adantlr 715 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉))) |
| 13 | 9, 10 | cusgrsize 29434 | . . . . . . . 8 ⊢ ((〈𝑉, 𝑒〉 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2)) |
| 14 | breq2 5095 | . . . . . . . . 9 ⊢ ((♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) ↔ (♯‘𝐸) ≤ ((♯‘𝑉)C2))) | |
| 15 | 14 | biimpd 229 | . . . . . . . 8 ⊢ ((♯‘(Edg‘〈𝑉, 𝑒〉)) = ((♯‘𝑉)C2) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
| 16 | 13, 15 | syl 17 | . . . . . . 7 ⊢ ((〈𝑉, 𝑒〉 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
| 17 | 16 | expcom 413 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (〈𝑉, 𝑒〉 ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) |
| 18 | 17 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (〈𝑉, 𝑒〉 ∈ ComplUSGraph → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)))) |
| 19 | 18 | imp 406 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → ((♯‘𝐸) ≤ (♯‘(Edg‘〈𝑉, 𝑒〉)) → (♯‘𝐸) ≤ ((♯‘𝑉)C2))) |
| 20 | 12, 19 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) ∧ 〈𝑉, 𝑒〉 ∈ ComplUSGraph) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
| 21 | 4, 20 | exlimddv 1936 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
| 22 | 2, 21 | sylbi 217 | 1 ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4582 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 ≤ cle 11147 2c2 12180 Ccbc 14209 ♯chash 14237 Vtxcvtx 28975 Edgcedg 29026 USGraphcusgr 29128 FinUSGraphcfusgr 29295 ComplUSGraphccusgr 29389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-seq 13909 df-fac 14181 df-bc 14210 df-hash 14238 df-vtx 28977 df-iedg 28978 df-edg 29027 df-uhgr 29037 df-upgr 29061 df-umgr 29062 df-uspgr 29129 df-usgr 29130 df-fusgr 29296 df-nbgr 29312 df-uvtx 29365 df-cplgr 29390 df-cusgr 29391 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |