| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frrusgrord0 | Structured version Visualization version GIF version | ||
| Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
| Ref | Expression |
|---|---|
| frrusgrord0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| frrusgrord0 | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrusgr 30190 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
| 2 | 1 | anim1i 615 | . . . . . 6 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 3 | frrusgrord0.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | isfusgr 29245 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 5 | 2, 4 | sylibr 234 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
| 6 | 3 | fusgreghash2wsp 30267 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
| 7 | 5, 6 | stoic3 1776 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
| 8 | 7 | imp 406 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))) |
| 9 | 3 | frgrhash2wsp 30261 | . . . . . . . 8 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
| 10 | 9 | eqcomd 2735 | . . . . . . 7 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝑉) · ((♯‘𝑉) − 1)) = (♯‘(2 WSPathsN 𝐺))) |
| 11 | 10 | eqeq1d 2731 | . . . . . 6 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
| 12 | 11 | 3adant3 1132 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
| 14 | 3 | frrusgrord0lem 30268 | . . . . 5 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0)) |
| 15 | peano2cnm 11488 | . . . . . . . 8 ⊢ ((♯‘𝑉) ∈ ℂ → ((♯‘𝑉) − 1) ∈ ℂ) | |
| 16 | 15 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → ((♯‘𝑉) − 1) ∈ ℂ) |
| 17 | kcnktkm1cn 11609 | . . . . . . . 8 ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ) | |
| 18 | 17 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (𝐾 · (𝐾 − 1)) ∈ ℂ) |
| 19 | simp2 1137 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (♯‘𝑉) ∈ ℂ) | |
| 20 | simp3 1138 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (♯‘𝑉) ≠ 0) | |
| 21 | 16, 18, 19, 20 | mulcand 11811 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ ((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)))) |
| 22 | npcan1 11603 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℂ → (((♯‘𝑉) − 1) + 1) = (♯‘𝑉)) | |
| 23 | oveq1 7394 | . . . . . . . . 9 ⊢ (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (((♯‘𝑉) − 1) + 1) = ((𝐾 · (𝐾 − 1)) + 1)) | |
| 24 | 22, 23 | sylan9req 2785 | . . . . . . . 8 ⊢ (((♯‘𝑉) ∈ ℂ ∧ ((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)) |
| 25 | 24 | ex 412 | . . . . . . 7 ⊢ ((♯‘𝑉) ∈ ℂ → (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
| 26 | 25 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
| 27 | 21, 26 | sylbid 240 | . . . . 5 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
| 28 | 14, 27 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
| 29 | 13, 28 | sylbird 260 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ((♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
| 30 | 8, 29 | mpd 15 | . 2 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)) |
| 31 | 30 | ex 412 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 2c2 12241 ♯chash 14295 Vtxcvtx 28923 USGraphcusgr 29076 FinUSGraphcfusgr 29243 VtxDegcvtxdg 29393 WSPathsN cwwspthsn 29758 FriendGraph cfrgr 30187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-dju 9854 df-card 9892 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-rp 12952 df-xadd 13073 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-vtx 28925 df-iedg 28926 df-edg 28975 df-uhgr 28985 df-ushgr 28986 df-upgr 29009 df-umgr 29010 df-uspgr 29077 df-usgr 29078 df-fusgr 29244 df-nbgr 29260 df-vtxdg 29394 df-wlks 29527 df-wlkson 29528 df-trls 29620 df-trlson 29621 df-pths 29644 df-spths 29645 df-pthson 29646 df-spthson 29647 df-wwlks 29760 df-wwlksn 29761 df-wwlksnon 29762 df-wspthsn 29763 df-wspthsnon 29764 df-frgr 30188 |
| This theorem is referenced by: frrusgrord 30270 |
| Copyright terms: Public domain | W3C validator |