MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrusgrord0 Structured version   Visualization version   GIF version

Theorem frrusgrord0 30227
Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.)
Hypothesis
Ref Expression
frrusgrord0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frrusgrord0 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑣,𝑉

Proof of Theorem frrusgrord0
StepHypRef Expression
1 frgrusgr 30148 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
21anim1i 613 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
3 frrusgrord0.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
43isfusgr 29208 . . . . . 6 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
52, 4sylibr 233 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
63fusgreghash2wsp 30225 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
75, 6stoic3 1770 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
87imp 405 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
93frgrhash2wsp 30219 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))
109eqcomd 2731 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝑉) · ((♯‘𝑉) − 1)) = (♯‘(2 WSPathsN 𝐺)))
1110eqeq1d 2727 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
12113adant3 1129 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
1312adantr 479 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
143frrusgrord0lem 30226 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0))
15 peano2cnm 11563 . . . . . . . 8 ((♯‘𝑉) ∈ ℂ → ((♯‘𝑉) − 1) ∈ ℂ)
16153ad2ant2 1131 . . . . . . 7 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → ((♯‘𝑉) − 1) ∈ ℂ)
17 kcnktkm1cn 11682 . . . . . . . 8 (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)
18173ad2ant1 1130 . . . . . . 7 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (𝐾 · (𝐾 − 1)) ∈ ℂ)
19 simp2 1134 . . . . . . 7 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (♯‘𝑉) ∈ ℂ)
20 simp3 1135 . . . . . . 7 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (♯‘𝑉) ≠ 0)
2116, 18, 19, 20mulcand 11884 . . . . . 6 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ ((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1))))
22 npcan1 11676 . . . . . . . . 9 ((♯‘𝑉) ∈ ℂ → (((♯‘𝑉) − 1) + 1) = (♯‘𝑉))
23 oveq1 7426 . . . . . . . . 9 (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (((♯‘𝑉) − 1) + 1) = ((𝐾 · (𝐾 − 1)) + 1))
2422, 23sylan9req 2786 . . . . . . . 8 (((♯‘𝑉) ∈ ℂ ∧ ((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
2524ex 411 . . . . . . 7 ((♯‘𝑉) ∈ ℂ → (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
26253ad2ant2 1131 . . . . . 6 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
2721, 26sylbid 239 . . . . 5 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
2814, 27syl 17 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
2913, 28sylbird 259 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ((♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
308, 29mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
3130ex 411 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  c0 4322  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11143  0cc0 11145  1c1 11146   + caddc 11148   · cmul 11150  cmin 11481  2c2 12305  chash 14330  Vtxcvtx 28886  USGraphcusgr 29039  FinUSGraphcfusgr 29206  VtxDegcvtxdg 29356   WSPathsN cwwspthsn 29716   FriendGraph cfrgr 30145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-ac2 10493  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9472  df-oi 9540  df-dju 9931  df-card 9969  df-ac 10146  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13015  df-xadd 13133  df-fz 13525  df-fzo 13668  df-seq 14008  df-exp 14068  df-hash 14331  df-word 14506  df-concat 14562  df-s1 14587  df-s2 14840  df-s3 14841  df-cj 15087  df-re 15088  df-im 15089  df-sqrt 15223  df-abs 15224  df-clim 15473  df-sum 15674  df-vtx 28888  df-iedg 28889  df-edg 28938  df-uhgr 28948  df-ushgr 28949  df-upgr 28972  df-umgr 28973  df-uspgr 29040  df-usgr 29041  df-fusgr 29207  df-nbgr 29223  df-vtxdg 29357  df-wlks 29490  df-wlkson 29491  df-trls 29583  df-trlson 29584  df-pths 29607  df-spths 29608  df-pthson 29609  df-spthson 29610  df-wwlks 29718  df-wwlksn 29719  df-wwlksnon 29720  df-wspthsn 29721  df-wspthsnon 29722  df-frgr 30146
This theorem is referenced by:  frrusgrord  30228
  Copyright terms: Public domain W3C validator