Step | Hyp | Ref
| Expression |
1 | | frgrusgr 29782 |
. . . . . . 7
β’ (πΊ β FriendGraph β πΊ β
USGraph) |
2 | 1 | anim1i 614 |
. . . . . 6
β’ ((πΊ β FriendGraph β§ π β Fin) β (πΊ β USGraph β§ π β Fin)) |
3 | | frrusgrord0.v |
. . . . . . 7
β’ π = (VtxβπΊ) |
4 | 3 | isfusgr 28843 |
. . . . . 6
β’ (πΊ β FinUSGraph β (πΊ β USGraph β§ π β Fin)) |
5 | 2, 4 | sylibr 233 |
. . . . 5
β’ ((πΊ β FriendGraph β§ π β Fin) β πΊ β
FinUSGraph) |
6 | 3 | fusgreghash2wsp 29859 |
. . . . 5
β’ ((πΊ β FinUSGraph β§ π β β
) β
(βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ β (β―β(2 WSPathsN πΊ)) = ((β―βπ) Β· (πΎ Β· (πΎ β 1))))) |
7 | 5, 6 | stoic3 1777 |
. . . 4
β’ ((πΊ β FriendGraph β§ π β Fin β§ π β β
) β
(βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ β (β―β(2 WSPathsN πΊ)) = ((β―βπ) Β· (πΎ Β· (πΎ β 1))))) |
8 | 7 | imp 406 |
. . 3
β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β
) β§
βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (β―β(2 WSPathsN πΊ)) = ((β―βπ) Β· (πΎ Β· (πΎ β 1)))) |
9 | 3 | frgrhash2wsp 29853 |
. . . . . . . 8
β’ ((πΊ β FriendGraph β§ π β Fin) β
(β―β(2 WSPathsN πΊ)) = ((β―βπ) Β· ((β―βπ) β 1))) |
10 | 9 | eqcomd 2737 |
. . . . . . 7
β’ ((πΊ β FriendGraph β§ π β Fin) β
((β―βπ) Β·
((β―βπ) β
1)) = (β―β(2 WSPathsN πΊ))) |
11 | 10 | eqeq1d 2733 |
. . . . . 6
β’ ((πΊ β FriendGraph β§ π β Fin) β
(((β―βπ)
Β· ((β―βπ)
β 1)) = ((β―βπ) Β· (πΎ Β· (πΎ β 1))) β (β―β(2
WSPathsN πΊ)) =
((β―βπ) Β·
(πΎ Β· (πΎ β 1))))) |
12 | 11 | 3adant3 1131 |
. . . . 5
β’ ((πΊ β FriendGraph β§ π β Fin β§ π β β
) β
(((β―βπ)
Β· ((β―βπ)
β 1)) = ((β―βπ) Β· (πΎ Β· (πΎ β 1))) β (β―β(2
WSPathsN πΊ)) =
((β―βπ) Β·
(πΎ Β· (πΎ β 1))))) |
13 | 12 | adantr 480 |
. . . 4
β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β
) β§
βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (((β―βπ) Β· ((β―βπ) β 1)) = ((β―βπ) Β· (πΎ Β· (πΎ β 1))) β (β―β(2
WSPathsN πΊ)) =
((β―βπ) Β·
(πΎ Β· (πΎ β 1))))) |
14 | 3 | frrusgrord0lem 29860 |
. . . . 5
β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β
) β§
βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (πΎ β β β§ (β―βπ) β β β§
(β―βπ) β
0)) |
15 | | peano2cnm 11531 |
. . . . . . . 8
β’
((β―βπ)
β β β ((β―βπ) β 1) β
β) |
16 | 15 | 3ad2ant2 1133 |
. . . . . . 7
β’ ((πΎ β β β§
(β―βπ) β
β β§ (β―βπ) β 0) β ((β―βπ) β 1) β
β) |
17 | | kcnktkm1cn 11650 |
. . . . . . . 8
β’ (πΎ β β β (πΎ Β· (πΎ β 1)) β
β) |
18 | 17 | 3ad2ant1 1132 |
. . . . . . 7
β’ ((πΎ β β β§
(β―βπ) β
β β§ (β―βπ) β 0) β (πΎ Β· (πΎ β 1)) β
β) |
19 | | simp2 1136 |
. . . . . . 7
β’ ((πΎ β β β§
(β―βπ) β
β β§ (β―βπ) β 0) β (β―βπ) β
β) |
20 | | simp3 1137 |
. . . . . . 7
β’ ((πΎ β β β§
(β―βπ) β
β β§ (β―βπ) β 0) β (β―βπ) β 0) |
21 | 16, 18, 19, 20 | mulcand 11852 |
. . . . . 6
β’ ((πΎ β β β§
(β―βπ) β
β β§ (β―βπ) β 0) β (((β―βπ) Β· ((β―βπ) β 1)) =
((β―βπ) Β·
(πΎ Β· (πΎ β 1))) β
((β―βπ) β
1) = (πΎ Β· (πΎ β 1)))) |
22 | | npcan1 11644 |
. . . . . . . . 9
β’
((β―βπ)
β β β (((β―βπ) β 1) + 1) = (β―βπ)) |
23 | | oveq1 7419 |
. . . . . . . . 9
β’
(((β―βπ)
β 1) = (πΎ Β·
(πΎ β 1)) β
(((β―βπ) β
1) + 1) = ((πΎ Β·
(πΎ β 1)) +
1)) |
24 | 22, 23 | sylan9req 2792 |
. . . . . . . 8
β’
(((β―βπ)
β β β§ ((β―βπ) β 1) = (πΎ Β· (πΎ β 1))) β (β―βπ) = ((πΎ Β· (πΎ β 1)) + 1)) |
25 | 24 | ex 412 |
. . . . . . 7
β’
((β―βπ)
β β β (((β―βπ) β 1) = (πΎ Β· (πΎ β 1)) β (β―βπ) = ((πΎ Β· (πΎ β 1)) + 1))) |
26 | 25 | 3ad2ant2 1133 |
. . . . . 6
β’ ((πΎ β β β§
(β―βπ) β
β β§ (β―βπ) β 0) β (((β―βπ) β 1) = (πΎ Β· (πΎ β 1)) β (β―βπ) = ((πΎ Β· (πΎ β 1)) + 1))) |
27 | 21, 26 | sylbid 239 |
. . . . 5
β’ ((πΎ β β β§
(β―βπ) β
β β§ (β―βπ) β 0) β (((β―βπ) Β· ((β―βπ) β 1)) =
((β―βπ) Β·
(πΎ Β· (πΎ β 1))) β
(β―βπ) = ((πΎ Β· (πΎ β 1)) + 1))) |
28 | 14, 27 | syl 17 |
. . . 4
β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β
) β§
βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (((β―βπ) Β· ((β―βπ) β 1)) = ((β―βπ) Β· (πΎ Β· (πΎ β 1))) β (β―βπ) = ((πΎ Β· (πΎ β 1)) + 1))) |
29 | 13, 28 | sylbird 260 |
. . 3
β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β
) β§
βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β ((β―β(2 WSPathsN πΊ)) = ((β―βπ) Β· (πΎ Β· (πΎ β 1))) β (β―βπ) = ((πΎ Β· (πΎ β 1)) + 1))) |
30 | 8, 29 | mpd 15 |
. 2
β’ (((πΊ β FriendGraph β§ π β Fin β§ π β β
) β§
βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (β―βπ) = ((πΎ Β· (πΎ β 1)) + 1)) |
31 | 30 | ex 412 |
1
β’ ((πΊ β FriendGraph β§ π β Fin β§ π β β
) β
(βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ β (β―βπ) = ((πΎ Β· (πΎ β 1)) + 1))) |