Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frrusgrord0 | Structured version Visualization version GIF version |
Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
Ref | Expression |
---|---|
frrusgrord0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
frrusgrord0 | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrusgr 28625 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
2 | 1 | anim1i 615 | . . . . . 6 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | frrusgrord0.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | isfusgr 27685 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
5 | 2, 4 | sylibr 233 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
6 | 3 | fusgreghash2wsp 28702 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
7 | 5, 6 | stoic3 1779 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
8 | 7 | imp 407 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))) |
9 | 3 | frgrhash2wsp 28696 | . . . . . . . 8 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
10 | 9 | eqcomd 2744 | . . . . . . 7 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝑉) · ((♯‘𝑉) − 1)) = (♯‘(2 WSPathsN 𝐺))) |
11 | 10 | eqeq1d 2740 | . . . . . 6 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
12 | 11 | 3adant3 1131 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
13 | 12 | adantr 481 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
14 | 3 | frrusgrord0lem 28703 | . . . . 5 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0)) |
15 | peano2cnm 11287 | . . . . . . . 8 ⊢ ((♯‘𝑉) ∈ ℂ → ((♯‘𝑉) − 1) ∈ ℂ) | |
16 | 15 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → ((♯‘𝑉) − 1) ∈ ℂ) |
17 | kcnktkm1cn 11406 | . . . . . . . 8 ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ) | |
18 | 17 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (𝐾 · (𝐾 − 1)) ∈ ℂ) |
19 | simp2 1136 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (♯‘𝑉) ∈ ℂ) | |
20 | simp3 1137 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (♯‘𝑉) ≠ 0) | |
21 | 16, 18, 19, 20 | mulcand 11608 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ ((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)))) |
22 | npcan1 11400 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℂ → (((♯‘𝑉) − 1) + 1) = (♯‘𝑉)) | |
23 | oveq1 7282 | . . . . . . . . 9 ⊢ (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (((♯‘𝑉) − 1) + 1) = ((𝐾 · (𝐾 − 1)) + 1)) | |
24 | 22, 23 | sylan9req 2799 | . . . . . . . 8 ⊢ (((♯‘𝑉) ∈ ℂ ∧ ((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)) |
25 | 24 | ex 413 | . . . . . . 7 ⊢ ((♯‘𝑉) ∈ ℂ → (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
26 | 25 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
27 | 21, 26 | sylbid 239 | . . . . 5 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
28 | 14, 27 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
29 | 13, 28 | sylbird 259 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ((♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
30 | 8, 29 | mpd 15 | . 2 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)) |
31 | 30 | ex 413 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 − cmin 11205 2c2 12028 ♯chash 14044 Vtxcvtx 27366 USGraphcusgr 27519 FinUSGraphcfusgr 27683 VtxDegcvtxdg 27832 WSPathsN cwwspthsn 28193 FriendGraph cfrgr 28622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-dju 9659 df-card 9697 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-rp 12731 df-xadd 12849 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-s3 14562 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-vtx 27368 df-iedg 27369 df-edg 27418 df-uhgr 27428 df-ushgr 27429 df-upgr 27452 df-umgr 27453 df-uspgr 27520 df-usgr 27521 df-fusgr 27684 df-nbgr 27700 df-vtxdg 27833 df-wlks 27966 df-wlkson 27967 df-trls 28060 df-trlson 28061 df-pths 28084 df-spths 28085 df-pthson 28086 df-spthson 28087 df-wwlks 28195 df-wwlksn 28196 df-wwlksnon 28197 df-wspthsn 28198 df-wspthsnon 28199 df-frgr 28623 |
This theorem is referenced by: frrusgrord 28705 |
Copyright terms: Public domain | W3C validator |