MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrusgrord0 Structured version   Visualization version   GIF version

Theorem frrusgrord0 28121
Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.)
Hypothesis
Ref Expression
frrusgrord0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frrusgrord0 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑣,𝑉

Proof of Theorem frrusgrord0
StepHypRef Expression
1 frgrusgr 28042 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
21anim1i 616 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
3 frrusgrord0.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
43isfusgr 27102 . . . . . 6 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
52, 4sylibr 236 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
63fusgreghash2wsp 28119 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
75, 6stoic3 1777 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
87imp 409 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
93frgrhash2wsp 28113 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))
109eqcomd 2829 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝑉) · ((♯‘𝑉) − 1)) = (♯‘(2 WSPathsN 𝐺)))
1110eqeq1d 2825 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
12113adant3 1128 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
1312adantr 483 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
143frrusgrord0lem 28120 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0))
15 peano2cnm 10954 . . . . . . . 8 ((♯‘𝑉) ∈ ℂ → ((♯‘𝑉) − 1) ∈ ℂ)
16153ad2ant2 1130 . . . . . . 7 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → ((♯‘𝑉) − 1) ∈ ℂ)
17 kcnktkm1cn 11073 . . . . . . . 8 (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)
18173ad2ant1 1129 . . . . . . 7 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (𝐾 · (𝐾 − 1)) ∈ ℂ)
19 simp2 1133 . . . . . . 7 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (♯‘𝑉) ∈ ℂ)
20 simp3 1134 . . . . . . 7 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (♯‘𝑉) ≠ 0)
2116, 18, 19, 20mulcand 11275 . . . . . 6 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ ((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1))))
22 npcan1 11067 . . . . . . . . 9 ((♯‘𝑉) ∈ ℂ → (((♯‘𝑉) − 1) + 1) = (♯‘𝑉))
23 oveq1 7165 . . . . . . . . 9 (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (((♯‘𝑉) − 1) + 1) = ((𝐾 · (𝐾 − 1)) + 1))
2422, 23sylan9req 2879 . . . . . . . 8 (((♯‘𝑉) ∈ ℂ ∧ ((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
2524ex 415 . . . . . . 7 ((♯‘𝑉) ∈ ℂ → (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
26253ad2ant2 1130 . . . . . 6 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
2721, 26sylbid 242 . . . . 5 ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
2814, 27syl 17 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
2913, 28sylbird 262 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ((♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
308, 29mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
3130ex 415 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  c0 4293  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872  2c2 11695  chash 13693  Vtxcvtx 26783  USGraphcusgr 26936  FinUSGraphcfusgr 27100  VtxDegcvtxdg 27249   WSPathsN cwwspthsn 27608   FriendGraph cfrgr 28039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-dju 9332  df-card 9370  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-vtx 26785  df-iedg 26786  df-edg 26835  df-uhgr 26845  df-ushgr 26846  df-upgr 26869  df-umgr 26870  df-uspgr 26937  df-usgr 26938  df-fusgr 27101  df-nbgr 27117  df-vtxdg 27250  df-wlks 27383  df-wlkson 27384  df-trls 27476  df-trlson 27477  df-pths 27499  df-spths 27500  df-pthson 27501  df-spthson 27502  df-wwlks 27610  df-wwlksn 27611  df-wwlksnon 27612  df-wspthsn 27613  df-wspthsnon 27614  df-frgr 28040
This theorem is referenced by:  frrusgrord  28122
  Copyright terms: Public domain W3C validator