Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frrusgrord0 | Structured version Visualization version GIF version |
Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
Ref | Expression |
---|---|
frrusgrord0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
frrusgrord0 | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrusgr 28526 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
2 | 1 | anim1i 614 | . . . . . 6 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | frrusgrord0.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | isfusgr 27588 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
5 | 2, 4 | sylibr 233 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
6 | 3 | fusgreghash2wsp 28603 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
7 | 5, 6 | stoic3 1780 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
8 | 7 | imp 406 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))) |
9 | 3 | frgrhash2wsp 28597 | . . . . . . . 8 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
10 | 9 | eqcomd 2744 | . . . . . . 7 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝑉) · ((♯‘𝑉) − 1)) = (♯‘(2 WSPathsN 𝐺))) |
11 | 10 | eqeq1d 2740 | . . . . . 6 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
12 | 11 | 3adant3 1130 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
13 | 12 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) |
14 | 3 | frrusgrord0lem 28604 | . . . . 5 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0)) |
15 | peano2cnm 11217 | . . . . . . . 8 ⊢ ((♯‘𝑉) ∈ ℂ → ((♯‘𝑉) − 1) ∈ ℂ) | |
16 | 15 | 3ad2ant2 1132 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → ((♯‘𝑉) − 1) ∈ ℂ) |
17 | kcnktkm1cn 11336 | . . . . . . . 8 ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ) | |
18 | 17 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (𝐾 · (𝐾 − 1)) ∈ ℂ) |
19 | simp2 1135 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (♯‘𝑉) ∈ ℂ) | |
20 | simp3 1136 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (♯‘𝑉) ≠ 0) | |
21 | 16, 18, 19, 20 | mulcand 11538 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ ((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)))) |
22 | npcan1 11330 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℂ → (((♯‘𝑉) − 1) + 1) = (♯‘𝑉)) | |
23 | oveq1 7262 | . . . . . . . . 9 ⊢ (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (((♯‘𝑉) − 1) + 1) = ((𝐾 · (𝐾 − 1)) + 1)) | |
24 | 22, 23 | sylan9req 2800 | . . . . . . . 8 ⊢ (((♯‘𝑉) ∈ ℂ ∧ ((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)) |
25 | 24 | ex 412 | . . . . . . 7 ⊢ ((♯‘𝑉) ∈ ℂ → (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
26 | 25 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
27 | 21, 26 | sylbid 239 | . . . . 5 ⊢ ((𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
28 | 14, 27 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((♯‘𝑉) · ((♯‘𝑉) − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
29 | 13, 28 | sylbird 259 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ((♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
30 | 8, 29 | mpd 15 | . 2 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)) |
31 | 30 | ex 412 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 2c2 11958 ♯chash 13972 Vtxcvtx 27269 USGraphcusgr 27422 FinUSGraphcfusgr 27586 VtxDegcvtxdg 27735 WSPathsN cwwspthsn 28094 FriendGraph cfrgr 28523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-dju 9590 df-card 9628 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-vtx 27271 df-iedg 27272 df-edg 27321 df-uhgr 27331 df-ushgr 27332 df-upgr 27355 df-umgr 27356 df-uspgr 27423 df-usgr 27424 df-fusgr 27587 df-nbgr 27603 df-vtxdg 27736 df-wlks 27869 df-wlkson 27870 df-trls 27962 df-trlson 27963 df-pths 27985 df-spths 27986 df-pthson 27987 df-spthson 27988 df-wwlks 28096 df-wwlksn 28097 df-wwlksnon 28098 df-wspthsn 28099 df-wspthsnon 28100 df-frgr 28524 |
This theorem is referenced by: frrusgrord 28606 |
Copyright terms: Public domain | W3C validator |