![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sizusglecusglem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for sizusglecusg 26948. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
Ref | Expression |
---|---|
fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
usgrsscusgra.h | ⊢ 𝑉 = (Vtx‘𝐻) |
usgrsscusgra.f | ⊢ 𝐹 = (Edg‘𝐻) |
Ref | Expression |
---|---|
sizusglecusglem2 | ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrsscusgra.h | . . . 4 ⊢ 𝑉 = (Vtx‘𝐻) | |
2 | usgrsscusgra.f | . . . 4 ⊢ 𝐹 = (Edg‘𝐻) | |
3 | 1, 2 | cusgrfi 26943 | . . 3 ⊢ ((𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝑉 ∈ Fin) |
4 | 3 | 3adant1 1110 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝑉 ∈ Fin) |
5 | fusgrmaxsize.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | fusgrmaxsize.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 6 | isfusgr 26803 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
8 | fusgrfis 26815 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
9 | 7, 8 | sylbir 227 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (Edg‘𝐺) ∈ Fin) |
10 | 5, 9 | syl5eqel 2871 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → 𝐸 ∈ Fin) |
11 | 10 | ex 405 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝑉 ∈ Fin → 𝐸 ∈ Fin)) |
12 | 11 | 3ad2ant1 1113 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → (𝑉 ∈ Fin → 𝐸 ∈ Fin)) |
13 | 4, 12 | mpd 15 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ‘cfv 6188 Fincfn 8306 Vtxcvtx 26484 Edgcedg 26535 USGraphcusgr 26637 FinUSGraphcfusgr 26801 ComplUSGraphccusgr 26895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-dju 9124 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-n0 11708 df-xnn0 11780 df-z 11794 df-uz 12059 df-fz 12709 df-hash 13506 df-vtx 26486 df-iedg 26487 df-edg 26536 df-uhgr 26546 df-upgr 26570 df-umgr 26571 df-uspgr 26638 df-usgr 26639 df-fusgr 26802 df-nbgr 26818 df-uvtx 26871 df-cplgr 26896 df-cusgr 26897 |
This theorem is referenced by: sizusglecusg 26948 |
Copyright terms: Public domain | W3C validator |