Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ishmo | Structured version Visualization version GIF version |
Description: The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmoval.8 | ⊢ 𝐻 = (HmOp‘𝑈) |
hmoval.9 | ⊢ 𝐴 = (𝑈adj𝑈) |
Ref | Expression |
---|---|
ishmo | ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmoval.8 | . . . 4 ⊢ 𝐻 = (HmOp‘𝑈) | |
2 | hmoval.9 | . . . 4 ⊢ 𝐴 = (𝑈adj𝑈) | |
3 | 1, 2 | hmoval 29172 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
4 | 3 | eleq2d 2824 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ 𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡})) |
5 | fveq2 6774 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝐴‘𝑡) = (𝐴‘𝑇)) | |
6 | id 22 | . . . 4 ⊢ (𝑡 = 𝑇 → 𝑡 = 𝑇) | |
7 | 5, 6 | eqeq12d 2754 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝐴‘𝑡) = 𝑡 ↔ (𝐴‘𝑇) = 𝑇)) |
8 | 7 | elrab 3624 | . 2 ⊢ (𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡} ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇)) |
9 | 4, 8 | bitrdi 287 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 NrmCVeccnv 28946 adjcaj 29110 HmOpchmo 29111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-hmo 29113 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |