MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishmo Structured version   Visualization version   GIF version

Theorem ishmo 29074
Description: The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmoval.8 𝐻 = (HmOp‘𝑈)
hmoval.9 𝐴 = (𝑈adj𝑈)
Assertion
Ref Expression
ishmo (𝑈 ∈ NrmCVec → (𝑇𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴𝑇) = 𝑇)))

Proof of Theorem ishmo
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 hmoval.8 . . . 4 𝐻 = (HmOp‘𝑈)
2 hmoval.9 . . . 4 𝐴 = (𝑈adj𝑈)
31, 2hmoval 29073 . . 3 (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
43eleq2d 2824 . 2 (𝑈 ∈ NrmCVec → (𝑇𝐻𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡}))
5 fveq2 6756 . . . 4 (𝑡 = 𝑇 → (𝐴𝑡) = (𝐴𝑇))
6 id 22 . . . 4 (𝑡 = 𝑇𝑡 = 𝑇)
75, 6eqeq12d 2754 . . 3 (𝑡 = 𝑇 → ((𝐴𝑡) = 𝑡 ↔ (𝐴𝑇) = 𝑇))
87elrab 3617 . 2 (𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡} ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴𝑇) = 𝑇))
94, 8bitrdi 286 1 (𝑈 ∈ NrmCVec → (𝑇𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴𝑇) = 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  dom cdm 5580  cfv 6418  (class class class)co 7255  NrmCVeccnv 28847  adjcaj 29011  HmOpchmo 29012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-hmo 29014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator