| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishmo | Structured version Visualization version GIF version | ||
| Description: The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmoval.8 | ⊢ 𝐻 = (HmOp‘𝑈) |
| hmoval.9 | ⊢ 𝐴 = (𝑈adj𝑈) |
| Ref | Expression |
|---|---|
| ishmo | ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmoval.8 | . . . 4 ⊢ 𝐻 = (HmOp‘𝑈) | |
| 2 | hmoval.9 | . . . 4 ⊢ 𝐴 = (𝑈adj𝑈) | |
| 3 | 1, 2 | hmoval 30746 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
| 4 | 3 | eleq2d 2815 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ 𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡})) |
| 5 | fveq2 6865 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝐴‘𝑡) = (𝐴‘𝑇)) | |
| 6 | id 22 | . . . 4 ⊢ (𝑡 = 𝑇 → 𝑡 = 𝑇) | |
| 7 | 5, 6 | eqeq12d 2746 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝐴‘𝑡) = 𝑡 ↔ (𝐴‘𝑇) = 𝑇)) |
| 8 | 7 | elrab 3667 | . 2 ⊢ (𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡} ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇)) |
| 9 | 4, 8 | bitrdi 287 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3411 dom cdm 5646 ‘cfv 6519 (class class class)co 7394 NrmCVeccnv 30520 adjcaj 30684 HmOpchmo 30685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-hmo 30687 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |