![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ishmo | Structured version Visualization version GIF version |
Description: The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmoval.8 | ⊢ 𝐻 = (HmOp‘𝑈) |
hmoval.9 | ⊢ 𝐴 = (𝑈adj𝑈) |
Ref | Expression |
---|---|
ishmo | ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmoval.8 | . . . 4 ⊢ 𝐻 = (HmOp‘𝑈) | |
2 | hmoval.9 | . . . 4 ⊢ 𝐴 = (𝑈adj𝑈) | |
3 | 1, 2 | hmoval 30557 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
4 | 3 | eleq2d 2811 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ 𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡})) |
5 | fveq2 6882 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝐴‘𝑡) = (𝐴‘𝑇)) | |
6 | id 22 | . . . 4 ⊢ (𝑡 = 𝑇 → 𝑡 = 𝑇) | |
7 | 5, 6 | eqeq12d 2740 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝐴‘𝑡) = 𝑡 ↔ (𝐴‘𝑇) = 𝑇)) |
8 | 7 | elrab 3676 | . 2 ⊢ (𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡} ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇)) |
9 | 4, 8 | bitrdi 287 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3424 dom cdm 5667 ‘cfv 6534 (class class class)co 7402 NrmCVeccnv 30331 adjcaj 30495 HmOpchmo 30496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fv 6542 df-ov 7405 df-hmo 30498 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |