Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ishmo | Structured version Visualization version GIF version |
Description: The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmoval.8 | ⊢ 𝐻 = (HmOp‘𝑈) |
hmoval.9 | ⊢ 𝐴 = (𝑈adj𝑈) |
Ref | Expression |
---|---|
ishmo | ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmoval.8 | . . . 4 ⊢ 𝐻 = (HmOp‘𝑈) | |
2 | hmoval.9 | . . . 4 ⊢ 𝐴 = (𝑈adj𝑈) | |
3 | 1, 2 | hmoval 29073 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) |
4 | 3 | eleq2d 2824 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ 𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡})) |
5 | fveq2 6756 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝐴‘𝑡) = (𝐴‘𝑇)) | |
6 | id 22 | . . . 4 ⊢ (𝑡 = 𝑇 → 𝑡 = 𝑇) | |
7 | 5, 6 | eqeq12d 2754 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝐴‘𝑡) = 𝑡 ↔ (𝐴‘𝑇) = 𝑇)) |
8 | 7 | elrab 3617 | . 2 ⊢ (𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡} ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇)) |
9 | 4, 8 | bitrdi 286 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 NrmCVeccnv 28847 adjcaj 29011 HmOpchmo 29012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-hmo 29014 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |