MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishmo Structured version   Visualization version   GIF version

Theorem ishmo 30755
Description: The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmoval.8 𝐻 = (HmOp‘𝑈)
hmoval.9 𝐴 = (𝑈adj𝑈)
Assertion
Ref Expression
ishmo (𝑈 ∈ NrmCVec → (𝑇𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴𝑇) = 𝑇)))

Proof of Theorem ishmo
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 hmoval.8 . . . 4 𝐻 = (HmOp‘𝑈)
2 hmoval.9 . . . 4 𝐴 = (𝑈adj𝑈)
31, 2hmoval 30754 . . 3 (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
43eleq2d 2814 . 2 (𝑈 ∈ NrmCVec → (𝑇𝐻𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡}))
5 fveq2 6822 . . . 4 (𝑡 = 𝑇 → (𝐴𝑡) = (𝐴𝑇))
6 id 22 . . . 4 (𝑡 = 𝑇𝑡 = 𝑇)
75, 6eqeq12d 2745 . . 3 (𝑡 = 𝑇 → ((𝐴𝑡) = 𝑡 ↔ (𝐴𝑇) = 𝑇))
87elrab 3648 . 2 (𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡} ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴𝑇) = 𝑇))
94, 8bitrdi 287 1 (𝑈 ∈ NrmCVec → (𝑇𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴𝑇) = 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3394  dom cdm 5619  cfv 6482  (class class class)co 7349  NrmCVeccnv 30528  adjcaj 30692  HmOpchmo 30693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-hmo 30695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator