MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishmo Structured version   Visualization version   GIF version

Theorem ishmo 29173
Description: The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmoval.8 𝐻 = (HmOp‘𝑈)
hmoval.9 𝐴 = (𝑈adj𝑈)
Assertion
Ref Expression
ishmo (𝑈 ∈ NrmCVec → (𝑇𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴𝑇) = 𝑇)))

Proof of Theorem ishmo
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 hmoval.8 . . . 4 𝐻 = (HmOp‘𝑈)
2 hmoval.9 . . . 4 𝐴 = (𝑈adj𝑈)
31, 2hmoval 29172 . . 3 (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡})
43eleq2d 2824 . 2 (𝑈 ∈ NrmCVec → (𝑇𝐻𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡}))
5 fveq2 6774 . . . 4 (𝑡 = 𝑇 → (𝐴𝑡) = (𝐴𝑇))
6 id 22 . . . 4 (𝑡 = 𝑇𝑡 = 𝑇)
75, 6eqeq12d 2754 . . 3 (𝑡 = 𝑇 → ((𝐴𝑡) = 𝑡 ↔ (𝐴𝑇) = 𝑇))
87elrab 3624 . 2 (𝑇 ∈ {𝑡 ∈ dom 𝐴 ∣ (𝐴𝑡) = 𝑡} ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴𝑇) = 𝑇))
94, 8bitrdi 287 1 (𝑈 ∈ NrmCVec → (𝑇𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴𝑇) = 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  dom cdm 5589  cfv 6433  (class class class)co 7275  NrmCVeccnv 28946  adjcaj 29110  HmOpchmo 29111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-hmo 29113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator