Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngamgm Structured version   Visualization version   GIF version

Theorem 2zrngamgm 42800
Description: R is an (additive) magma. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngamgm 𝑅 ∈ Mgm
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem 2zrngamgm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2829 . . . . . 6 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
21rexbidv 3262 . . . . 5 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
3 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
42, 3elrab2 3589 . . . 4 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
5 eqeq1 2829 . . . . . 6 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
65rexbidv 3262 . . . . 5 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
76, 3elrab2 3589 . . . 4 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
8 oveq2 6918 . . . . . . . . 9 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
98eqeq2d 2835 . . . . . . . 8 (𝑥 = 𝑦 → (𝑎 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑦)))
109cbvrexv 3384 . . . . . . 7 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) ↔ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))
11 zaddcl 11752 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
1211ancoms 452 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
1312adantr 474 . . . . . . . . . . 11 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) ∈ ℤ)
14 simpl 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑦 ∈ ℤ)
15 simpl 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑥 ∈ ℤ)
16 zaddcl 11752 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 + 𝑥) ∈ ℤ)
1714, 15, 16syl2anr 590 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (𝑦 + 𝑥) ∈ ℤ)
1817adantr 474 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑦 + 𝑥) ∈ ℤ)
19 oveq2 6918 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑦 + 𝑥) → (2 · 𝑧) = (2 · (𝑦 + 𝑥)))
2019eqeq2d 2835 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑦 + 𝑥) → ((2 · (𝑦 + 𝑥)) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥))))
2120adantl 475 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) ∧ 𝑧 = (𝑦 + 𝑥)) → ((2 · (𝑦 + 𝑥)) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥))))
22 eqidd 2826 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥)))
2318, 21, 22rspcedvd 3533 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ∃𝑧 ∈ ℤ (2 · (𝑦 + 𝑥)) = (2 · 𝑧))
24 simpr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑎 = (2 · 𝑦))
25 simpr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑏 = (2 · 𝑥))
2624, 25oveqan12rd 6930 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) = ((2 · 𝑦) + (2 · 𝑥)))
2726adantr 474 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑎 + 𝑏) = ((2 · 𝑦) + (2 · 𝑥)))
28 2cnd 11436 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 2 ∈ ℂ)
29 zcn 11716 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
3029adantr 474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑦 ∈ ℂ)
3130adantl 475 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 𝑦 ∈ ℂ)
32 zcn 11716 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3332adantr 474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑥 ∈ ℂ)
3433adantr 474 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 𝑥 ∈ ℂ)
3528, 31, 34adddid 10388 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (2 · (𝑦 + 𝑥)) = ((2 · 𝑦) + (2 · 𝑥)))
3635adantr 474 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (2 · (𝑦 + 𝑥)) = ((2 · 𝑦) + (2 · 𝑥)))
3727, 36eqtr4d 2864 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑎 + 𝑏) = (2 · (𝑦 + 𝑥)))
3837eqeq1d 2827 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ((𝑎 + 𝑏) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · 𝑧)))
3938rexbidv 3262 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧) ↔ ∃𝑧 ∈ ℤ (2 · (𝑦 + 𝑥)) = (2 · 𝑧)))
4023, 39mpbird 249 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))
4140ex 403 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧)))
4241rexlimdvaa 3241 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))))
4342rexlimiva 3237 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))))
4443imp 397 . . . . . . . . . . . . 13 ((∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦)) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧)))
45 oveq2 6918 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧))
4645eqeq2d 2835 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑎 + 𝑏) = (2 · 𝑥) ↔ (𝑎 + 𝑏) = (2 · 𝑧)))
4746cbvrexv 3384 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥) ↔ ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))
4844, 47syl6ibr 244 . . . . . . . . . . . 12 ((∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦)) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
4948impcom 398 . . . . . . . . . . 11 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥))
50 eqeq1 2829 . . . . . . . . . . . . 13 (𝑧 = (𝑎 + 𝑏) → (𝑧 = (2 · 𝑥) ↔ (𝑎 + 𝑏) = (2 · 𝑥)))
5150rexbidv 3262 . . . . . . . . . . . 12 (𝑧 = (𝑎 + 𝑏) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
5251, 3elrab2 3589 . . . . . . . . . . 11 ((𝑎 + 𝑏) ∈ 𝐸 ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
5313, 49, 52sylanbrc 578 . . . . . . . . . 10 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) ∈ 𝐸)
5453exp32 413 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 + 𝑏) ∈ 𝐸)))
5554impancom 445 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 ∈ ℤ → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 + 𝑏) ∈ 𝐸)))
5655com13 88 . . . . . . 7 (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸)))
5710, 56sylbi 209 . . . . . 6 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸)))
5857impcom 398 . . . . 5 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸))
5958imp 397 . . . 4 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 + 𝑏) ∈ 𝐸)
604, 7, 59syl2anb 591 . . 3 ((𝑎𝐸𝑏𝐸) → (𝑎 + 𝑏) ∈ 𝐸)
6160rgen2a 3186 . 2 𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸
62 0z 11722 . . . . 5 0 ∈ ℤ
63 2cn 11433 . . . . . 6 2 ∈ ℂ
64 0zd 11723 . . . . . . 7 (2 ∈ ℂ → 0 ∈ ℤ)
65 oveq2 6918 . . . . . . . . 9 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
6665eqeq2d 2835 . . . . . . . 8 (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
6766adantl 475 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
68 mul01 10541 . . . . . . . 8 (2 ∈ ℂ → (2 · 0) = 0)
6968eqcomd 2831 . . . . . . 7 (2 ∈ ℂ → 0 = (2 · 0))
7064, 67, 69rspcedvd 3533 . . . . . 6 (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))
7163, 70ax-mp 5 . . . . 5 𝑥 ∈ ℤ 0 = (2 · 𝑥)
72 eqeq1 2829 . . . . . . 7 (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥)))
7372rexbidv 3262 . . . . . 6 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
7473elrab 3585 . . . . 5 (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
7562, 71, 74mpbir2an 702 . . . 4 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
7675, 3eleqtrri 2905 . . 3 0 ∈ 𝐸
77 2zrngbas.r . . . . 5 𝑅 = (ℂflds 𝐸)
783, 772zrngbas 42797 . . . 4 𝐸 = (Base‘𝑅)
793, 772zrngadd 42798 . . . 4 + = (+g𝑅)
8078, 79ismgmn0 17604 . . 3 (0 ∈ 𝐸 → (𝑅 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸))
8176, 80ax-mp 5 . 2 (𝑅 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸)
8261, 81mpbir 223 1 𝑅 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  wrex 3118  {crab 3121  (class class class)co 6910  cc 10257  0cc0 10259   + caddc 10262   · cmul 10264  2c2 11413  cz 11711  s cress 16230  Mgmcmgm 17600  fldccnfld 20113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-addf 10338
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-mgm 17602  df-cnfld 20114
This theorem is referenced by:  2zrngasgrp  42801
  Copyright terms: Public domain W3C validator