Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngamgm Structured version   Visualization version   GIF version

Theorem 2zrngamgm 44563
Description: R is an (additive) magma. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngamgm 𝑅 ∈ Mgm
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem 2zrngamgm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2802 . . . . . 6 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
21rexbidv 3256 . . . . 5 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
3 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
42, 3elrab2 3631 . . . 4 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
5 eqeq1 2802 . . . . . 6 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
65rexbidv 3256 . . . . 5 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
76, 3elrab2 3631 . . . 4 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
8 oveq2 7143 . . . . . . . . 9 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
98eqeq2d 2809 . . . . . . . 8 (𝑥 = 𝑦 → (𝑎 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑦)))
109cbvrexvw 3397 . . . . . . 7 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) ↔ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))
11 zaddcl 12010 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
1211ancoms 462 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
1312adantr 484 . . . . . . . . . . 11 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) ∈ ℤ)
14 simpl 486 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑦 ∈ ℤ)
15 simpl 486 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑥 ∈ ℤ)
16 zaddcl 12010 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 + 𝑥) ∈ ℤ)
1714, 15, 16syl2anr 599 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (𝑦 + 𝑥) ∈ ℤ)
1817adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑦 + 𝑥) ∈ ℤ)
19 oveq2 7143 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑦 + 𝑥) → (2 · 𝑧) = (2 · (𝑦 + 𝑥)))
2019eqeq2d 2809 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑦 + 𝑥) → ((2 · (𝑦 + 𝑥)) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥))))
2120adantl 485 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) ∧ 𝑧 = (𝑦 + 𝑥)) → ((2 · (𝑦 + 𝑥)) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥))))
22 eqidd 2799 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥)))
2318, 21, 22rspcedvd 3574 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ∃𝑧 ∈ ℤ (2 · (𝑦 + 𝑥)) = (2 · 𝑧))
24 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑎 = (2 · 𝑦))
25 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑏 = (2 · 𝑥))
2624, 25oveqan12rd 7155 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) = ((2 · 𝑦) + (2 · 𝑥)))
2726adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑎 + 𝑏) = ((2 · 𝑦) + (2 · 𝑥)))
28 2cnd 11703 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 2 ∈ ℂ)
29 zcn 11974 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
3029adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑦 ∈ ℂ)
3130adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 𝑦 ∈ ℂ)
32 zcn 11974 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3332adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑥 ∈ ℂ)
3433adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 𝑥 ∈ ℂ)
3528, 31, 34adddid 10654 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (2 · (𝑦 + 𝑥)) = ((2 · 𝑦) + (2 · 𝑥)))
3635adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (2 · (𝑦 + 𝑥)) = ((2 · 𝑦) + (2 · 𝑥)))
3727, 36eqtr4d 2836 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑎 + 𝑏) = (2 · (𝑦 + 𝑥)))
3837eqeq1d 2800 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ((𝑎 + 𝑏) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · 𝑧)))
3938rexbidv 3256 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧) ↔ ∃𝑧 ∈ ℤ (2 · (𝑦 + 𝑥)) = (2 · 𝑧)))
4023, 39mpbird 260 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))
4140ex 416 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧)))
4241rexlimdvaa 3244 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))))
4342rexlimiva 3240 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))))
4443imp 410 . . . . . . . . . . . . 13 ((∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦)) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧)))
45 oveq2 7143 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧))
4645eqeq2d 2809 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑎 + 𝑏) = (2 · 𝑥) ↔ (𝑎 + 𝑏) = (2 · 𝑧)))
4746cbvrexvw 3397 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥) ↔ ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))
4844, 47syl6ibr 255 . . . . . . . . . . . 12 ((∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦)) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
4948impcom 411 . . . . . . . . . . 11 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥))
50 eqeq1 2802 . . . . . . . . . . . . 13 (𝑧 = (𝑎 + 𝑏) → (𝑧 = (2 · 𝑥) ↔ (𝑎 + 𝑏) = (2 · 𝑥)))
5150rexbidv 3256 . . . . . . . . . . . 12 (𝑧 = (𝑎 + 𝑏) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
5251, 3elrab2 3631 . . . . . . . . . . 11 ((𝑎 + 𝑏) ∈ 𝐸 ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
5313, 49, 52sylanbrc 586 . . . . . . . . . 10 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) ∈ 𝐸)
5453exp32 424 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 + 𝑏) ∈ 𝐸)))
5554impancom 455 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 ∈ ℤ → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 + 𝑏) ∈ 𝐸)))
5655com13 88 . . . . . . 7 (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸)))
5710, 56sylbi 220 . . . . . 6 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸)))
5857impcom 411 . . . . 5 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸))
5958imp 410 . . . 4 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 + 𝑏) ∈ 𝐸)
604, 7, 59syl2anb 600 . . 3 ((𝑎𝐸𝑏𝐸) → (𝑎 + 𝑏) ∈ 𝐸)
6160rgen2 3168 . 2 𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸
62 0z 11980 . . . . 5 0 ∈ ℤ
63 2cn 11700 . . . . . 6 2 ∈ ℂ
64 0zd 11981 . . . . . . 7 (2 ∈ ℂ → 0 ∈ ℤ)
65 oveq2 7143 . . . . . . . . 9 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
6665eqeq2d 2809 . . . . . . . 8 (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
6766adantl 485 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
68 mul01 10808 . . . . . . . 8 (2 ∈ ℂ → (2 · 0) = 0)
6968eqcomd 2804 . . . . . . 7 (2 ∈ ℂ → 0 = (2 · 0))
7064, 67, 69rspcedvd 3574 . . . . . 6 (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))
7163, 70ax-mp 5 . . . . 5 𝑥 ∈ ℤ 0 = (2 · 𝑥)
72 eqeq1 2802 . . . . . . 7 (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥)))
7372rexbidv 3256 . . . . . 6 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
7473elrab 3628 . . . . 5 (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
7562, 71, 74mpbir2an 710 . . . 4 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
7675, 3eleqtrri 2889 . . 3 0 ∈ 𝐸
77 2zrngbas.r . . . . 5 𝑅 = (ℂflds 𝐸)
783, 772zrngbas 44560 . . . 4 𝐸 = (Base‘𝑅)
793, 772zrngadd 44561 . . . 4 + = (+g𝑅)
8078, 79ismgmn0 17846 . . 3 (0 ∈ 𝐸 → (𝑅 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸))
8176, 80ax-mp 5 . 2 (𝑅 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸)
8261, 81mpbir 234 1 𝑅 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  (class class class)co 7135  cc 10524  0cc0 10526   + caddc 10529   · cmul 10531  2c2 11680  cz 11969  s cress 16476  Mgmcmgm 17842  fldccnfld 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-mgm 17844  df-cnfld 20092
This theorem is referenced by:  2zrngasgrp  44564
  Copyright terms: Public domain W3C validator