Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngamgm Structured version   Visualization version   GIF version

Theorem 2zrngamgm 47622
Description: R is an (additive) magma. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngamgm 𝑅 ∈ Mgm
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem 2zrngamgm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2730 . . . . . 6 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
21rexbidv 3169 . . . . 5 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
3 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
42, 3elrab2 3684 . . . 4 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
5 eqeq1 2730 . . . . . 6 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
65rexbidv 3169 . . . . 5 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
76, 3elrab2 3684 . . . 4 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
8 oveq2 7432 . . . . . . . . 9 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
98eqeq2d 2737 . . . . . . . 8 (𝑥 = 𝑦 → (𝑎 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑦)))
109cbvrexvw 3226 . . . . . . 7 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) ↔ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))
11 zaddcl 12654 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
1211ancoms 457 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
1312adantr 479 . . . . . . . . . . 11 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) ∈ ℤ)
14 simpl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑦 ∈ ℤ)
15 simpl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑥 ∈ ℤ)
16 zaddcl 12654 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 + 𝑥) ∈ ℤ)
1714, 15, 16syl2anr 595 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (𝑦 + 𝑥) ∈ ℤ)
1817adantr 479 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑦 + 𝑥) ∈ ℤ)
19 oveq2 7432 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑦 + 𝑥) → (2 · 𝑧) = (2 · (𝑦 + 𝑥)))
2019eqeq2d 2737 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑦 + 𝑥) → ((2 · (𝑦 + 𝑥)) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥))))
2120adantl 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) ∧ 𝑧 = (𝑦 + 𝑥)) → ((2 · (𝑦 + 𝑥)) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥))))
22 eqidd 2727 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥)))
2318, 21, 22rspcedvd 3610 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ∃𝑧 ∈ ℤ (2 · (𝑦 + 𝑥)) = (2 · 𝑧))
24 simpr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑎 = (2 · 𝑦))
25 simpr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑏 = (2 · 𝑥))
2624, 25oveqan12rd 7444 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) = ((2 · 𝑦) + (2 · 𝑥)))
2726adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑎 + 𝑏) = ((2 · 𝑦) + (2 · 𝑥)))
28 2cnd 12342 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 2 ∈ ℂ)
29 zcn 12615 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
3029adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑦 ∈ ℂ)
3130adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 𝑦 ∈ ℂ)
32 zcn 12615 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3332adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑥 ∈ ℂ)
3433adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 𝑥 ∈ ℂ)
3528, 31, 34adddid 11288 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (2 · (𝑦 + 𝑥)) = ((2 · 𝑦) + (2 · 𝑥)))
3635adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (2 · (𝑦 + 𝑥)) = ((2 · 𝑦) + (2 · 𝑥)))
3727, 36eqtr4d 2769 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑎 + 𝑏) = (2 · (𝑦 + 𝑥)))
3837eqeq1d 2728 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ((𝑎 + 𝑏) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · 𝑧)))
3938rexbidv 3169 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧) ↔ ∃𝑧 ∈ ℤ (2 · (𝑦 + 𝑥)) = (2 · 𝑧)))
4023, 39mpbird 256 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))
4140ex 411 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧)))
4241rexlimdvaa 3146 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))))
4342rexlimiva 3137 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))))
4443imp 405 . . . . . . . . . . . . 13 ((∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦)) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧)))
45 oveq2 7432 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧))
4645eqeq2d 2737 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑎 + 𝑏) = (2 · 𝑥) ↔ (𝑎 + 𝑏) = (2 · 𝑧)))
4746cbvrexvw 3226 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥) ↔ ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))
4844, 47imbitrrdi 251 . . . . . . . . . . . 12 ((∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦)) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
4948impcom 406 . . . . . . . . . . 11 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥))
50 eqeq1 2730 . . . . . . . . . . . . 13 (𝑧 = (𝑎 + 𝑏) → (𝑧 = (2 · 𝑥) ↔ (𝑎 + 𝑏) = (2 · 𝑥)))
5150rexbidv 3169 . . . . . . . . . . . 12 (𝑧 = (𝑎 + 𝑏) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
5251, 3elrab2 3684 . . . . . . . . . . 11 ((𝑎 + 𝑏) ∈ 𝐸 ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
5313, 49, 52sylanbrc 581 . . . . . . . . . 10 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) ∈ 𝐸)
5453exp32 419 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 + 𝑏) ∈ 𝐸)))
5554impancom 450 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 ∈ ℤ → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 + 𝑏) ∈ 𝐸)))
5655com13 88 . . . . . . 7 (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸)))
5710, 56sylbi 216 . . . . . 6 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸)))
5857impcom 406 . . . . 5 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸))
5958imp 405 . . . 4 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 + 𝑏) ∈ 𝐸)
604, 7, 59syl2anb 596 . . 3 ((𝑎𝐸𝑏𝐸) → (𝑎 + 𝑏) ∈ 𝐸)
6160rgen2 3188 . 2 𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸
62 0z 12621 . . . . 5 0 ∈ ℤ
63 2cn 12339 . . . . . 6 2 ∈ ℂ
64 0zd 12622 . . . . . . 7 (2 ∈ ℂ → 0 ∈ ℤ)
65 oveq2 7432 . . . . . . . . 9 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
6665eqeq2d 2737 . . . . . . . 8 (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
6766adantl 480 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
68 mul01 11443 . . . . . . . 8 (2 ∈ ℂ → (2 · 0) = 0)
6968eqcomd 2732 . . . . . . 7 (2 ∈ ℂ → 0 = (2 · 0))
7064, 67, 69rspcedvd 3610 . . . . . 6 (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))
7163, 70ax-mp 5 . . . . 5 𝑥 ∈ ℤ 0 = (2 · 𝑥)
72 eqeq1 2730 . . . . . . 7 (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥)))
7372rexbidv 3169 . . . . . 6 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
7473elrab 3681 . . . . 5 (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
7562, 71, 74mpbir2an 709 . . . 4 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
7675, 3eleqtrri 2825 . . 3 0 ∈ 𝐸
77 2zrngbas.r . . . . 5 𝑅 = (ℂflds 𝐸)
783, 772zrngbas 47619 . . . 4 𝐸 = (Base‘𝑅)
793, 772zrngadd 47620 . . . 4 + = (+g𝑅)
8078, 79ismgmn0 18635 . . 3 (0 ∈ 𝐸 → (𝑅 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸))
8176, 80ax-mp 5 . 2 (𝑅 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸)
8261, 81mpbir 230 1 𝑅 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  {crab 3419  (class class class)co 7424  cc 11156  0cc0 11158   + caddc 11161   · cmul 11163  2c2 12319  cz 12610  s cress 17242  Mgmcmgm 18631  fldccnfld 21343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-mgm 18633  df-cnfld 21344
This theorem is referenced by:  2zrngasgrp  47623
  Copyright terms: Public domain W3C validator