Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgm1 | Structured version Visualization version GIF version |
Description: The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.) |
Ref | Expression |
---|---|
mgm1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
Ref | Expression |
---|---|
mgm1 | ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7258 | . . . . 5 ⊢ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) | |
2 | opex 5373 | . . . . . 6 ⊢ 〈𝐼, 𝐼〉 ∈ V | |
3 | fvsng 7034 | . . . . . 6 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) | |
4 | 2, 3 | mpan 686 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
5 | 1, 4 | eqtrid 2790 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼) |
6 | snidg 4592 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) | |
7 | 5, 6 | eqeltrd 2839 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ∈ {𝐼}) |
8 | oveq1 7262 | . . . . . . 7 ⊢ (𝑥 = 𝐼 → (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦)) | |
9 | 8 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝐼 → ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼})) |
10 | 9 | ralbidv 3120 | . . . . 5 ⊢ (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼})) |
11 | 10 | ralsng 4606 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼})) |
12 | oveq2 7263 | . . . . . 6 ⊢ (𝑦 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
13 | 12 | eleq1d 2823 | . . . . 5 ⊢ (𝑦 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ∈ {𝐼})) |
14 | 13 | ralsng 4606 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑦 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ∈ {𝐼})) |
15 | 11, 14 | bitrd 278 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ∈ {𝐼})) |
16 | 7, 15 | mpbird 256 | . 2 ⊢ (𝐼 ∈ 𝑉 → ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼}) |
17 | snex 5349 | . . . . 5 ⊢ {𝐼} ∈ V | |
18 | mgm1.m | . . . . . 6 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
19 | 18 | grpbase 16922 | . . . . 5 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
20 | 17, 19 | ax-mp 5 | . . . 4 ⊢ {𝐼} = (Base‘𝑀) |
21 | snex 5349 | . . . . 5 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
22 | 18 | grpplusg 16924 | . . . . 5 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
23 | 21, 22 | ax-mp 5 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
24 | 20, 23 | ismgmn0 18243 | . . 3 ⊢ (𝐼 ∈ {𝐼} → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼})) |
25 | 6, 24 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼})) |
26 | 16, 25 | mpbird 256 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 {csn 4558 {cpr 4560 〈cop 4564 ‘cfv 6418 (class class class)co 7255 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 Mgmcmgm 18239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mgm 18241 |
This theorem is referenced by: sgrp1 18299 |
Copyright terms: Public domain | W3C validator |