| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgm1 | Structured version Visualization version GIF version | ||
| Description: The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.) |
| Ref | Expression |
|---|---|
| mgm1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
| Ref | Expression |
|---|---|
| mgm1 | ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7393 | . . . . 5 ⊢ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) | |
| 2 | opex 5427 | . . . . . 6 ⊢ 〈𝐼, 𝐼〉 ∈ V | |
| 3 | fvsng 7157 | . . . . . 6 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) | |
| 4 | 2, 3 | mpan 690 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
| 5 | 1, 4 | eqtrid 2777 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼) |
| 6 | snidg 4627 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) | |
| 7 | 5, 6 | eqeltrd 2829 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ∈ {𝐼}) |
| 8 | oveq1 7397 | . . . . . . 7 ⊢ (𝑥 = 𝐼 → (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦)) | |
| 9 | 8 | eleq1d 2814 | . . . . . 6 ⊢ (𝑥 = 𝐼 → ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼})) |
| 10 | 9 | ralbidv 3157 | . . . . 5 ⊢ (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼})) |
| 11 | 10 | ralsng 4642 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼})) |
| 12 | oveq2 7398 | . . . . . 6 ⊢ (𝑦 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 13 | 12 | eleq1d 2814 | . . . . 5 ⊢ (𝑦 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ∈ {𝐼})) |
| 14 | 13 | ralsng 4642 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑦 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ∈ {𝐼})) |
| 15 | 11, 14 | bitrd 279 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼} ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ∈ {𝐼})) |
| 16 | 7, 15 | mpbird 257 | . 2 ⊢ (𝐼 ∈ 𝑉 → ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼}) |
| 17 | snex 5394 | . . . . 5 ⊢ {𝐼} ∈ V | |
| 18 | mgm1.m | . . . . . 6 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
| 19 | 18 | grpbase 17259 | . . . . 5 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
| 20 | 17, 19 | ax-mp 5 | . . . 4 ⊢ {𝐼} = (Base‘𝑀) |
| 21 | snex 5394 | . . . . 5 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
| 22 | 18 | grpplusg 17260 | . . . . 5 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
| 23 | 21, 22 | ax-mp 5 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
| 24 | 20, 23 | ismgmn0 18576 | . . 3 ⊢ (𝐼 ∈ {𝐼} → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼})) |
| 25 | 6, 24 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) ∈ {𝐼})) |
| 26 | 16, 25 | mpbird 257 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 {csn 4592 {cpr 4594 〈cop 4598 ‘cfv 6514 (class class class)co 7390 ndxcnx 17170 Basecbs 17186 +gcplusg 17227 Mgmcmgm 18572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mgm 18574 |
| This theorem is referenced by: sgrp1 18663 |
| Copyright terms: Public domain | W3C validator |