| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6914. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
| Ref | Expression |
|---|---|
| elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
| 2 | elfvex 6914 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: mrieqv2d 17651 mreexmrid 17655 mreexexlem3d 17658 mreexexlem4d 17659 mreexexd 17660 mreexdomd 17661 acsdomd 18567 ismgmn0 18620 ecqusaddcl 19176 telgsumfz 19971 isirred 20379 tgclb 22908 alexsublem 23982 cnextcn 24005 ustssel 24144 fmucnd 24230 trcfilu 24232 cfiluweak 24233 ucnextcn 24242 imasdsf1olem 24312 imasf1oxmet 24314 comet 24452 restmetu 24509 wlkp1lem4 29656 wlkp1lem8 29660 1wlkdlem4 30121 eupth2lem3lem1 30209 eupth2lem3lem2 30210 gsumsubg 33040 opprqusplusg 33504 opprqus0g 33505 lsssra 33628 lbsdiflsp0 33666 fedgmullem1 33669 mzpcl34 42754 xlimbr 45856 xlimmnfvlem2 45862 xlimpnfvlem2 45866 sectpropdlem 49003 invpropdlem 49005 isopropdlem 49007 cicpropdlem 49016 oppcup3 49142 elxpcbasex1ALT 49166 elxpcbasex2ALT 49168 swapf1 49189 |
| Copyright terms: Public domain | W3C validator |