MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvexd Structured version   Visualization version   GIF version

Theorem elfvexd 6808
Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6807. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elfvexd.1 (𝜑𝐴 ∈ (𝐵𝐶))
Assertion
Ref Expression
elfvexd (𝜑𝐶 ∈ V)

Proof of Theorem elfvexd
StepHypRef Expression
1 elfvexd.1 . 2 (𝜑𝐴 ∈ (𝐵𝐶))
2 elfvex 6807 . 2 (𝐴 ∈ (𝐵𝐶) → 𝐶 ∈ V)
31, 2syl 17 1 (𝜑𝐶 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441
This theorem is referenced by:  mrieqv2d  17348  mreexmrid  17352  mreexexlem3d  17355  mreexexlem4d  17356  mreexexd  17357  mreexdomd  17358  acsdomd  18275  ismgmn0  18328  telgsumfz  19591  isirred  19941  tgclb  22120  alexsublem  23195  cnextcn  23218  ustssel  23357  fmucnd  23444  trcfilu  23446  cfiluweak  23447  ucnextcn  23456  imasdsf1olem  23526  imasf1oxmet  23528  comet  23669  restmetu  23726  wlkp1lem4  28044  wlkp1lem8  28048  1wlkdlem4  28504  eupth2lem3lem1  28592  eupth2lem3lem2  28593  gsumsubg  31306  lbsdiflsp0  31707  fedgmullem1  31710  mzpcl34  40553  xlimbr  43368  xlimmnfvlem2  43374  xlimpnfvlem2  43378
  Copyright terms: Public domain W3C validator