![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version |
Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6527. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
Ref | Expression |
---|---|
elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
2 | elfvex 6527 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2048 Vcvv 3409 ‘cfv 6182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 ax-nul 5061 ax-pow 5113 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-dm 5410 df-iota 6146 df-fv 6190 |
This theorem is referenced by: mrieqv2d 16758 mreexmrid 16762 mreexexlem3d 16765 mreexexlem4d 16766 mreexexd 16767 mreexdomd 16768 acsdomd 17639 ismgmn0 17702 telgsumfz 18850 isirred 19162 tgclb 21272 alexsublem 22346 cnextcn 22369 ustssel 22507 fmucnd 22594 trcfilu 22596 cfiluweak 22597 ucnextcn 22606 imasdsf1olem 22676 imasf1oxmet 22678 comet 22816 restmetu 22873 wlkp1lem4 27154 wlkp1lem8 27158 1wlkdlem4 27659 eupth2lem3lem1 27748 eupth2lem3lem2 27749 gsumsubg 30476 lbsdiflsp0 30607 fedgmullem1 30610 mzpcl34 38668 xlimbr 41485 xlimmnfvlem2 41491 xlimpnfvlem2 41495 |
Copyright terms: Public domain | W3C validator |