Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version |
Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6807. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
Ref | Expression |
---|---|
elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
2 | elfvex 6807 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-dm 5599 df-iota 6391 df-fv 6441 |
This theorem is referenced by: mrieqv2d 17348 mreexmrid 17352 mreexexlem3d 17355 mreexexlem4d 17356 mreexexd 17357 mreexdomd 17358 acsdomd 18275 ismgmn0 18328 telgsumfz 19591 isirred 19941 tgclb 22120 alexsublem 23195 cnextcn 23218 ustssel 23357 fmucnd 23444 trcfilu 23446 cfiluweak 23447 ucnextcn 23456 imasdsf1olem 23526 imasf1oxmet 23528 comet 23669 restmetu 23726 wlkp1lem4 28044 wlkp1lem8 28048 1wlkdlem4 28504 eupth2lem3lem1 28592 eupth2lem3lem2 28593 gsumsubg 31306 lbsdiflsp0 31707 fedgmullem1 31710 mzpcl34 40553 xlimbr 43368 xlimmnfvlem2 43374 xlimpnfvlem2 43378 |
Copyright terms: Public domain | W3C validator |