| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6899. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
| Ref | Expression |
|---|---|
| elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
| 2 | elfvex 6899 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: mrieqv2d 17607 mreexmrid 17611 mreexexlem3d 17614 mreexexlem4d 17615 mreexexd 17616 mreexdomd 17617 acsdomd 18523 ismgmn0 18576 ecqusaddcl 19132 telgsumfz 19927 isirred 20335 tgclb 22864 alexsublem 23938 cnextcn 23961 ustssel 24100 fmucnd 24186 trcfilu 24188 cfiluweak 24189 ucnextcn 24198 imasdsf1olem 24268 imasf1oxmet 24270 comet 24408 restmetu 24465 wlkp1lem4 29611 wlkp1lem8 29615 1wlkdlem4 30076 eupth2lem3lem1 30164 eupth2lem3lem2 30165 gsumsubg 32993 opprqusplusg 33467 opprqus0g 33468 lsssra 33591 lbsdiflsp0 33629 fedgmullem1 33632 mzpcl34 42726 xlimbr 45832 xlimmnfvlem2 45838 xlimpnfvlem2 45842 sectpropdlem 49029 invpropdlem 49031 isopropdlem 49033 cicpropdlem 49042 oppcup3 49202 elxpcbasex1ALT 49242 elxpcbasex2ALT 49244 swapf1 49265 |
| Copyright terms: Public domain | W3C validator |