| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6878. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
| Ref | Expression |
|---|---|
| elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
| 2 | elfvex 6878 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-dm 5641 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: mrieqv2d 17581 mreexmrid 17585 mreexexlem3d 17588 mreexexlem4d 17589 mreexexd 17590 mreexdomd 17591 acsdomd 18499 ismgmn0 18552 ecqusaddcl 19108 telgsumfz 19905 isirred 20340 tgclb 22891 alexsublem 23965 cnextcn 23988 ustssel 24127 fmucnd 24213 trcfilu 24215 cfiluweak 24216 ucnextcn 24225 imasdsf1olem 24295 imasf1oxmet 24297 comet 24435 restmetu 24492 wlkp1lem4 29656 wlkp1lem8 29660 1wlkdlem4 30120 eupth2lem3lem1 30208 eupth2lem3lem2 30209 gsumsubg 33030 opprqusplusg 33454 opprqus0g 33455 lsssra 33578 lbsdiflsp0 33616 fedgmullem1 33619 mzpcl34 42713 xlimbr 45819 xlimmnfvlem2 45825 xlimpnfvlem2 45829 sectpropdlem 49019 invpropdlem 49021 isopropdlem 49023 cicpropdlem 49032 oppcup3 49192 elxpcbasex1ALT 49232 elxpcbasex2ALT 49234 swapf1 49255 |
| Copyright terms: Public domain | W3C validator |