![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version |
Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6958. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
Ref | Expression |
---|---|
elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
2 | elfvex 6958 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 |
This theorem is referenced by: mrieqv2d 17697 mreexmrid 17701 mreexexlem3d 17704 mreexexlem4d 17705 mreexexd 17706 mreexdomd 17707 acsdomd 18627 ismgmn0 18680 ecqusaddcl 19233 telgsumfz 20032 isirred 20445 tgclb 22998 alexsublem 24073 cnextcn 24096 ustssel 24235 fmucnd 24322 trcfilu 24324 cfiluweak 24325 ucnextcn 24334 imasdsf1olem 24404 imasf1oxmet 24406 comet 24547 restmetu 24604 wlkp1lem4 29712 wlkp1lem8 29716 1wlkdlem4 30172 eupth2lem3lem1 30260 eupth2lem3lem2 30261 gsumsubg 33029 opprqusplusg 33482 opprqus0g 33483 lsssra 33603 lbsdiflsp0 33639 fedgmullem1 33642 mzpcl34 42687 xlimbr 45748 xlimmnfvlem2 45754 xlimpnfvlem2 45758 |
Copyright terms: Public domain | W3C validator |