| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6857. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
| Ref | Expression |
|---|---|
| elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
| 2 | elfvex 6857 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-dm 5624 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: mrieqv2d 17545 mreexmrid 17549 mreexexlem3d 17552 mreexexlem4d 17553 mreexexd 17554 mreexdomd 17555 acsdomd 18463 ismgmn0 18550 ecqusaddcl 19105 telgsumfz 19902 isirred 20337 tgclb 22885 alexsublem 23959 cnextcn 23982 ustssel 24121 fmucnd 24206 trcfilu 24208 cfiluweak 24209 ucnextcn 24218 imasdsf1olem 24288 imasf1oxmet 24290 comet 24428 restmetu 24485 wlkp1lem4 29653 wlkp1lem8 29657 1wlkdlem4 30120 eupth2lem3lem1 30208 eupth2lem3lem2 30209 gsumsubg 33026 opprqusplusg 33454 opprqus0g 33455 lsssra 33600 lbsdiflsp0 33639 fedgmullem1 33642 mzpcl34 42823 xlimbr 45924 xlimmnfvlem2 45930 xlimpnfvlem2 45934 sectpropdlem 49136 invpropdlem 49138 isopropdlem 49140 cicpropdlem 49149 oppcup3 49309 elxpcbasex1ALT 49349 elxpcbasex2ALT 49351 swapf1 49372 |
| Copyright terms: Public domain | W3C validator |