Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version |
Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6789. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
Ref | Expression |
---|---|
elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
2 | elfvex 6789 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 |
This theorem is referenced by: mrieqv2d 17265 mreexmrid 17269 mreexexlem3d 17272 mreexexlem4d 17273 mreexexd 17274 mreexdomd 17275 acsdomd 18190 ismgmn0 18243 telgsumfz 19506 isirred 19856 tgclb 22028 alexsublem 23103 cnextcn 23126 ustssel 23265 fmucnd 23352 trcfilu 23354 cfiluweak 23355 ucnextcn 23364 imasdsf1olem 23434 imasf1oxmet 23436 comet 23575 restmetu 23632 wlkp1lem4 27946 wlkp1lem8 27950 1wlkdlem4 28405 eupth2lem3lem1 28493 eupth2lem3lem2 28494 gsumsubg 31208 lbsdiflsp0 31609 fedgmullem1 31612 mzpcl34 40469 xlimbr 43258 xlimmnfvlem2 43264 xlimpnfvlem2 43268 |
Copyright terms: Public domain | W3C validator |