MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvexd Structured version   Visualization version   GIF version

Theorem elfvexd 6915
Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6914. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elfvexd.1 (𝜑𝐴 ∈ (𝐵𝐶))
Assertion
Ref Expression
elfvexd (𝜑𝐶 ∈ V)

Proof of Theorem elfvexd
StepHypRef Expression
1 elfvexd.1 . 2 (𝜑𝐴 ∈ (𝐵𝐶))
2 elfvex 6914 . 2 (𝐴 ∈ (𝐵𝐶) → 𝐶 ∈ V)
31, 2syl 17 1 (𝜑𝐶 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-dm 5664  df-iota 6484  df-fv 6539
This theorem is referenced by:  mrieqv2d  17651  mreexmrid  17655  mreexexlem3d  17658  mreexexlem4d  17659  mreexexd  17660  mreexdomd  17661  acsdomd  18567  ismgmn0  18620  ecqusaddcl  19176  telgsumfz  19971  isirred  20379  tgclb  22908  alexsublem  23982  cnextcn  24005  ustssel  24144  fmucnd  24230  trcfilu  24232  cfiluweak  24233  ucnextcn  24242  imasdsf1olem  24312  imasf1oxmet  24314  comet  24452  restmetu  24509  wlkp1lem4  29656  wlkp1lem8  29660  1wlkdlem4  30121  eupth2lem3lem1  30209  eupth2lem3lem2  30210  gsumsubg  33040  opprqusplusg  33504  opprqus0g  33505  lsssra  33628  lbsdiflsp0  33666  fedgmullem1  33669  mzpcl34  42754  xlimbr  45856  xlimmnfvlem2  45862  xlimpnfvlem2  45866  sectpropdlem  49003  invpropdlem  49005  isopropdlem  49007  cicpropdlem  49016  oppcup3  49142  elxpcbasex1ALT  49166  elxpcbasex2ALT  49168  swapf1  49189
  Copyright terms: Public domain W3C validator