Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version |
Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6844. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
Ref | Expression |
---|---|
elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
2 | elfvex 6844 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3441 ‘cfv 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-dm 5615 df-iota 6415 df-fv 6471 |
This theorem is referenced by: mrieqv2d 17415 mreexmrid 17419 mreexexlem3d 17422 mreexexlem4d 17423 mreexexd 17424 mreexdomd 17425 acsdomd 18342 ismgmn0 18395 telgsumfz 19658 isirred 20008 tgclb 22191 alexsublem 23266 cnextcn 23289 ustssel 23428 fmucnd 23515 trcfilu 23517 cfiluweak 23518 ucnextcn 23527 imasdsf1olem 23597 imasf1oxmet 23599 comet 23740 restmetu 23797 wlkp1lem4 28152 wlkp1lem8 28156 1wlkdlem4 28612 eupth2lem3lem1 28700 eupth2lem3lem2 28701 gsumsubg 31414 lbsdiflsp0 31813 fedgmullem1 31816 mzpcl34 40763 xlimbr 43612 xlimmnfvlem2 43618 xlimpnfvlem2 43622 |
Copyright terms: Public domain | W3C validator |