| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6858. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
| Ref | Expression |
|---|---|
| elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
| 2 | elfvex 6858 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-dm 5629 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: mrieqv2d 17545 mreexmrid 17549 mreexexlem3d 17552 mreexexlem4d 17553 mreexexd 17554 mreexdomd 17555 acsdomd 18463 ismgmn0 18516 ecqusaddcl 19072 telgsumfz 19869 isirred 20304 tgclb 22855 alexsublem 23929 cnextcn 23952 ustssel 24091 fmucnd 24177 trcfilu 24179 cfiluweak 24180 ucnextcn 24189 imasdsf1olem 24259 imasf1oxmet 24261 comet 24399 restmetu 24456 wlkp1lem4 29624 wlkp1lem8 29628 1wlkdlem4 30088 eupth2lem3lem1 30176 eupth2lem3lem2 30177 gsumsubg 33008 opprqusplusg 33435 opprqus0g 33436 lsssra 33570 lbsdiflsp0 33609 fedgmullem1 33612 mzpcl34 42724 xlimbr 45828 xlimmnfvlem2 45834 xlimpnfvlem2 45838 sectpropdlem 49041 invpropdlem 49043 isopropdlem 49045 cicpropdlem 49054 oppcup3 49214 elxpcbasex1ALT 49254 elxpcbasex2ALT 49256 swapf1 49277 |
| Copyright terms: Public domain | W3C validator |