| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvexd | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6878. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elfvexd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) |
| Ref | Expression |
|---|---|
| elfvexd | ⊢ (𝜑 → 𝐶 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) | |
| 2 | elfvex 6878 | . 2 ⊢ (𝐴 ∈ (𝐵‘𝐶) → 𝐶 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-dm 5641 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: mrieqv2d 17580 mreexmrid 17584 mreexexlem3d 17587 mreexexlem4d 17588 mreexexd 17589 mreexdomd 17590 acsdomd 18498 ismgmn0 18551 ecqusaddcl 19107 telgsumfz 19904 isirred 20339 tgclb 22890 alexsublem 23964 cnextcn 23987 ustssel 24126 fmucnd 24212 trcfilu 24214 cfiluweak 24215 ucnextcn 24224 imasdsf1olem 24294 imasf1oxmet 24296 comet 24434 restmetu 24491 wlkp1lem4 29655 wlkp1lem8 29659 1wlkdlem4 30119 eupth2lem3lem1 30207 eupth2lem3lem2 30208 gsumsubg 33029 opprqusplusg 33453 opprqus0g 33454 lsssra 33577 lbsdiflsp0 33615 fedgmullem1 33618 mzpcl34 42712 xlimbr 45818 xlimmnfvlem2 45824 xlimpnfvlem2 45828 sectpropdlem 49018 invpropdlem 49020 isopropdlem 49022 cicpropdlem 49031 oppcup3 49191 elxpcbasex1ALT 49231 elxpcbasex2ALT 49233 swapf1 49254 |
| Copyright terms: Public domain | W3C validator |