MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvexd Structured version   Visualization version   GIF version

Theorem elfvexd 6790
Description: If a function value has a member, then its argument is a set. Deduction form of elfvex 6789. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elfvexd.1 (𝜑𝐴 ∈ (𝐵𝐶))
Assertion
Ref Expression
elfvexd (𝜑𝐶 ∈ V)

Proof of Theorem elfvexd
StepHypRef Expression
1 elfvexd.1 . 2 (𝜑𝐴 ∈ (𝐵𝐶))
2 elfvex 6789 . 2 (𝐴 ∈ (𝐵𝐶) → 𝐶 ∈ V)
31, 2syl 17 1 (𝜑𝐶 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-dm 5590  df-iota 6376  df-fv 6426
This theorem is referenced by:  mrieqv2d  17265  mreexmrid  17269  mreexexlem3d  17272  mreexexlem4d  17273  mreexexd  17274  mreexdomd  17275  acsdomd  18190  ismgmn0  18243  telgsumfz  19506  isirred  19856  tgclb  22028  alexsublem  23103  cnextcn  23126  ustssel  23265  fmucnd  23352  trcfilu  23354  cfiluweak  23355  ucnextcn  23364  imasdsf1olem  23434  imasf1oxmet  23436  comet  23575  restmetu  23632  wlkp1lem4  27946  wlkp1lem8  27950  1wlkdlem4  28405  eupth2lem3lem1  28493  eupth2lem3lem2  28494  gsumsubg  31208  lbsdiflsp0  31609  fedgmullem1  31612  mzpcl34  40469  xlimbr  43258  xlimmnfvlem2  43264  xlimpnfvlem2  43268
  Copyright terms: Public domain W3C validator