Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressprs Structured version   Visualization version   GIF version

Theorem ressprs 31143
Description: The restriction of a proset is a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypothesis
Ref Expression
ressprs.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
ressprs ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )

Proof of Theorem ressprs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7290 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ V)
2 simp-4l 779 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝐾 ∈ Proset )
3 simp-4r 780 . . . . . . . . 9 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝐴𝐵)
4 simpllr 772 . . . . . . . . 9 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐴)
53, 4sseldd 3918 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐵)
62, 5jca 511 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝐾 ∈ Proset ∧ 𝑥𝐵))
7 simplr 765 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑦𝐴)
83, 7sseldd 3918 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑦𝐵)
9 simpr 484 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑧𝐴)
103, 9sseldd 3918 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑧𝐵)
11 ressprs.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
12 eqid 2738 . . . . . . . . . . . 12 (le‘𝐾) = (le‘𝐾)
1311, 12isprs 17930 . . . . . . . . . . 11 (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
1413simprbi 496 . . . . . . . . . 10 (𝐾 ∈ Proset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1514r19.21bi 3132 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ∀𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1615r19.21bi 3132 . . . . . . . 8 (((𝐾 ∈ Proset ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1716r19.21bi 3132 . . . . . . 7 ((((𝐾 ∈ Proset ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
186, 8, 10, 17syl21anc 834 . . . . . 6 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1918ralrimiva 3107 . . . . 5 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ∀𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2019ralrimiva 3107 . . . 4 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) → ∀𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2120ralrimiva 3107 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
22 eqid 2738 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
2322, 11ressbas2 16875 . . . . . 6 (𝐴𝐵𝐴 = (Base‘(𝐾s 𝐴)))
2423adantl 481 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐴 = (Base‘(𝐾s 𝐴)))
2511fvexi 6770 . . . . . . . . . . . 12 𝐵 ∈ V
2625ssex 5240 . . . . . . . . . . 11 (𝐴𝐵𝐴 ∈ V)
2722, 12ressle 17013 . . . . . . . . . . 11 (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾s 𝐴)))
2826, 27syl 17 . . . . . . . . . 10 (𝐴𝐵 → (le‘𝐾) = (le‘(𝐾s 𝐴)))
2928adantl 481 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3029breqd 5081 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑥𝑥(le‘(𝐾s 𝐴))𝑥))
3129breqd 5081 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑦𝑥(le‘(𝐾s 𝐴))𝑦))
3229breqd 5081 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑦(le‘𝐾)𝑧𝑦(le‘(𝐾s 𝐴))𝑧))
3331, 32anbi12d 630 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) ↔ (𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧)))
3429breqd 5081 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑧𝑥(le‘(𝐾s 𝐴))𝑧))
3533, 34imbi12d 344 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧) ↔ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧)))
3630, 35anbi12d 630 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ (𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3724, 36raleqbidv 3327 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3824, 37raleqbidv 3327 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3924, 38raleqbidv 3327 . . . 4 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4039anbi2d 628 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (((𝐾s 𝐴) ∈ V ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) ↔ ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧)))))
411, 21, 40mpbi2and 708 . 2 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
42 eqid 2738 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
43 eqid 2738 . . 3 (le‘(𝐾s 𝐴)) = (le‘(𝐾s 𝐴))
4442, 43isprs 17930 . 2 ((𝐾s 𝐴) ∈ Proset ↔ ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4541, 44sylibr 233 1 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  lecple 16895   Proset cproset 17926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-dec 12367  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-ple 16908  df-proset 17928
This theorem is referenced by:  prsssdm  31769  ordtrestNEW  31773  ordtrest2NEW  31775
  Copyright terms: Public domain W3C validator