Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressprs Structured version   Visualization version   GIF version

Theorem ressprs 32936
Description: The restriction of a proset is a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypothesis
Ref Expression
ressprs.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
ressprs ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )

Proof of Theorem ressprs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7483 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ V)
2 simp-4l 782 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝐾 ∈ Proset )
3 simp-4r 783 . . . . . . . . 9 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝐴𝐵)
4 simpllr 775 . . . . . . . . 9 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐴)
53, 4sseldd 4009 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐵)
62, 5jca 511 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝐾 ∈ Proset ∧ 𝑥𝐵))
7 simplr 768 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑦𝐴)
83, 7sseldd 4009 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑦𝐵)
9 simpr 484 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑧𝐴)
103, 9sseldd 4009 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑧𝐵)
11 ressprs.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
12 eqid 2740 . . . . . . . . . . . 12 (le‘𝐾) = (le‘𝐾)
1311, 12isprs 18367 . . . . . . . . . . 11 (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
1413simprbi 496 . . . . . . . . . 10 (𝐾 ∈ Proset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1514r19.21bi 3257 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ∀𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1615r19.21bi 3257 . . . . . . . 8 (((𝐾 ∈ Proset ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1716r19.21bi 3257 . . . . . . 7 ((((𝐾 ∈ Proset ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
186, 8, 10, 17syl21anc 837 . . . . . 6 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1918ralrimiva 3152 . . . . 5 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ∀𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2019ralrimiva 3152 . . . 4 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) → ∀𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2120ralrimiva 3152 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
22 eqid 2740 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
2322, 11ressbas2 17296 . . . . . 6 (𝐴𝐵𝐴 = (Base‘(𝐾s 𝐴)))
2423adantl 481 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐴 = (Base‘(𝐾s 𝐴)))
2511fvexi 6934 . . . . . . . . . . . 12 𝐵 ∈ V
2625ssex 5339 . . . . . . . . . . 11 (𝐴𝐵𝐴 ∈ V)
2722, 12ressle 17439 . . . . . . . . . . 11 (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾s 𝐴)))
2826, 27syl 17 . . . . . . . . . 10 (𝐴𝐵 → (le‘𝐾) = (le‘(𝐾s 𝐴)))
2928adantl 481 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3029breqd 5177 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑥𝑥(le‘(𝐾s 𝐴))𝑥))
3129breqd 5177 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑦𝑥(le‘(𝐾s 𝐴))𝑦))
3229breqd 5177 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑦(le‘𝐾)𝑧𝑦(le‘(𝐾s 𝐴))𝑧))
3331, 32anbi12d 631 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) ↔ (𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧)))
3429breqd 5177 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑧𝑥(le‘(𝐾s 𝐴))𝑧))
3533, 34imbi12d 344 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧) ↔ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧)))
3630, 35anbi12d 631 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ (𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3724, 36raleqbidv 3354 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3824, 37raleqbidv 3354 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3924, 38raleqbidv 3354 . . . 4 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4039anbi2d 629 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (((𝐾s 𝐴) ∈ V ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) ↔ ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧)))))
411, 21, 40mpbi2and 711 . 2 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
42 eqid 2740 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
43 eqid 2740 . . 3 (le‘(𝐾s 𝐴)) = (le‘(𝐾s 𝐴))
4442, 43isprs 18367 . 2 ((𝐾s 𝐴) ∈ Proset ↔ ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4541, 44sylibr 234 1 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  lecple 17318   Proset cproset 18363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-dec 12759  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-ple 17331  df-proset 18365
This theorem is referenced by:  prsssdm  33863  ordtrestNEW  33867  ordtrest2NEW  33869
  Copyright terms: Public domain W3C validator