Step | Hyp | Ref
| Expression |
1 | | ovexd 7310 |
. . 3
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ V) |
2 | | simp-4l 780 |
. . . . . . . 8
⊢
(((((𝐾 ∈ Proset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝐾 ∈ Proset ) |
3 | | simp-4r 781 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ Proset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
4 | | simpllr 773 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ Proset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
5 | 3, 4 | sseldd 3922 |
. . . . . . . 8
⊢
(((((𝐾 ∈ Proset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
6 | 2, 5 | jca 512 |
. . . . . . 7
⊢
(((((𝐾 ∈ Proset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝐾 ∈ Proset ∧ 𝑥 ∈ 𝐵)) |
7 | | simplr 766 |
. . . . . . . 8
⊢
(((((𝐾 ∈ Proset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
8 | 3, 7 | sseldd 3922 |
. . . . . . 7
⊢
(((((𝐾 ∈ Proset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
9 | | simpr 485 |
. . . . . . . 8
⊢
(((((𝐾 ∈ Proset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
10 | 3, 9 | sseldd 3922 |
. . . . . . 7
⊢
(((((𝐾 ∈ Proset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
11 | | ressprs.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐾) |
12 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(le‘𝐾) =
(le‘𝐾) |
13 | 11, 12 | isprs 18015 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))) |
14 | 13 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Proset →
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
15 | 14 | r19.21bi 3134 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Proset ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
16 | 15 | r19.21bi 3134 |
. . . . . . . 8
⊢ (((𝐾 ∈ Proset ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
17 | 16 | r19.21bi 3134 |
. . . . . . 7
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
18 | 6, 8, 10, 17 | syl21anc 835 |
. . . . . 6
⊢
(((((𝐾 ∈ Proset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
19 | 18 | ralrimiva 3103 |
. . . . 5
⊢ ((((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
20 | 19 | ralrimiva 3103 |
. . . 4
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
21 | 20 | ralrimiva 3103 |
. . 3
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
22 | | eqid 2738 |
. . . . . . 7
⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) |
23 | 22, 11 | ressbas2 16949 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
24 | 23 | adantl 482 |
. . . . 5
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
25 | 11 | fvexi 6788 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ V |
26 | 25 | ssex 5245 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
27 | 22, 12 | ressle 17090 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
28 | 26, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝐵 → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
29 | 28 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
30 | 29 | breqd 5085 |
. . . . . . . 8
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝑥(le‘𝐾)𝑥 ↔ 𝑥(le‘(𝐾 ↾s 𝐴))𝑥)) |
31 | 29 | breqd 5085 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝑥(le‘𝐾)𝑦 ↔ 𝑥(le‘(𝐾 ↾s 𝐴))𝑦)) |
32 | 29 | breqd 5085 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝑦(le‘𝐾)𝑧 ↔ 𝑦(le‘(𝐾 ↾s 𝐴))𝑧)) |
33 | 31, 32 | anbi12d 631 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) ↔ (𝑥(le‘(𝐾 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐾 ↾s 𝐴))𝑧))) |
34 | 29 | breqd 5085 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝑥(le‘𝐾)𝑧 ↔ 𝑥(le‘(𝐾 ↾s 𝐴))𝑧)) |
35 | 33, 34 | imbi12d 345 |
. . . . . . . 8
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧) ↔ ((𝑥(le‘(𝐾 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐾 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐾 ↾s 𝐴))𝑧))) |
36 | 30, 35 | anbi12d 631 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ((𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ (𝑥(le‘(𝐾 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐾 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐾 ↾s 𝐴))𝑧)))) |
37 | 24, 36 | raleqbidv 3336 |
. . . . . 6
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (∀𝑧 ∈ 𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐾 ↾s 𝐴))(𝑥(le‘(𝐾 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐾 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐾 ↾s 𝐴))𝑧)))) |
38 | 24, 37 | raleqbidv 3336 |
. . . . 5
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑦 ∈ (Base‘(𝐾 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐾 ↾s 𝐴))(𝑥(le‘(𝐾 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐾 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐾 ↾s 𝐴))𝑧)))) |
39 | 24, 38 | raleqbidv 3336 |
. . . 4
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐾 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐾 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐾 ↾s 𝐴))(𝑥(le‘(𝐾 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐾 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐾 ↾s 𝐴))𝑧)))) |
40 | 39 | anbi2d 629 |
. . 3
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (((𝐾 ↾s 𝐴) ∈ V ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) ↔ ((𝐾 ↾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐾 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐾 ↾s 𝐴))(𝑥(le‘(𝐾 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐾 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐾 ↾s 𝐴))𝑧))))) |
41 | 1, 21, 40 | mpbi2and 709 |
. 2
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ((𝐾 ↾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐾 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐾 ↾s 𝐴))(𝑥(le‘(𝐾 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐾 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐾 ↾s 𝐴))𝑧)))) |
42 | | eqid 2738 |
. . 3
⊢
(Base‘(𝐾
↾s 𝐴)) =
(Base‘(𝐾
↾s 𝐴)) |
43 | | eqid 2738 |
. . 3
⊢
(le‘(𝐾
↾s 𝐴)) =
(le‘(𝐾
↾s 𝐴)) |
44 | 42, 43 | isprs 18015 |
. 2
⊢ ((𝐾 ↾s 𝐴) ∈ Proset ↔ ((𝐾 ↾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐾 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐾 ↾s 𝐴))(𝑥(le‘(𝐾 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐾 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐾 ↾s 𝐴))𝑧)))) |
45 | 41, 44 | sylibr 233 |
1
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Proset ) |