Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressprs Structured version   Visualization version   GIF version

Theorem ressprs 32908
Description: The restriction of a proset is a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypothesis
Ref Expression
ressprs.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
ressprs ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )

Proof of Theorem ressprs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7384 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ V)
2 simp-4l 782 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝐾 ∈ Proset )
3 simp-4r 783 . . . . . . . . 9 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝐴𝐵)
4 simpllr 775 . . . . . . . . 9 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐴)
53, 4sseldd 3936 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐵)
62, 5jca 511 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝐾 ∈ Proset ∧ 𝑥𝐵))
7 simplr 768 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑦𝐴)
83, 7sseldd 3936 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑦𝐵)
9 simpr 484 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑧𝐴)
103, 9sseldd 3936 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑧𝐵)
11 ressprs.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
12 eqid 2729 . . . . . . . . . . . 12 (le‘𝐾) = (le‘𝐾)
1311, 12isprs 18202 . . . . . . . . . . 11 (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
1413simprbi 496 . . . . . . . . . 10 (𝐾 ∈ Proset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1514r19.21bi 3221 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ∀𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1615r19.21bi 3221 . . . . . . . 8 (((𝐾 ∈ Proset ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1716r19.21bi 3221 . . . . . . 7 ((((𝐾 ∈ Proset ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
186, 8, 10, 17syl21anc 837 . . . . . 6 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1918ralrimiva 3121 . . . . 5 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ∀𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2019ralrimiva 3121 . . . 4 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) → ∀𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2120ralrimiva 3121 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
22 eqid 2729 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
2322, 11ressbas2 17149 . . . . . 6 (𝐴𝐵𝐴 = (Base‘(𝐾s 𝐴)))
2423adantl 481 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐴 = (Base‘(𝐾s 𝐴)))
2511fvexi 6836 . . . . . . . . . . . 12 𝐵 ∈ V
2625ssex 5260 . . . . . . . . . . 11 (𝐴𝐵𝐴 ∈ V)
2722, 12ressle 17284 . . . . . . . . . . 11 (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾s 𝐴)))
2826, 27syl 17 . . . . . . . . . 10 (𝐴𝐵 → (le‘𝐾) = (le‘(𝐾s 𝐴)))
2928adantl 481 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3029breqd 5103 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑥𝑥(le‘(𝐾s 𝐴))𝑥))
3129breqd 5103 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑦𝑥(le‘(𝐾s 𝐴))𝑦))
3229breqd 5103 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑦(le‘𝐾)𝑧𝑦(le‘(𝐾s 𝐴))𝑧))
3331, 32anbi12d 632 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) ↔ (𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧)))
3429breqd 5103 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑧𝑥(le‘(𝐾s 𝐴))𝑧))
3533, 34imbi12d 344 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧) ↔ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧)))
3630, 35anbi12d 632 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ (𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3724, 36raleqbidv 3309 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3824, 37raleqbidv 3309 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3924, 38raleqbidv 3309 . . . 4 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4039anbi2d 630 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (((𝐾s 𝐴) ∈ V ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) ↔ ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧)))))
411, 21, 40mpbi2and 712 . 2 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
42 eqid 2729 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
43 eqid 2729 . . 3 (le‘(𝐾s 𝐴)) = (le‘(𝐾s 𝐴))
4442, 43isprs 18202 . 2 ((𝐾s 𝐴) ∈ Proset ↔ ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4541, 44sylibr 234 1 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  lecple 17168   Proset cproset 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-dec 12592  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-ple 17181  df-proset 18200
This theorem is referenced by:  prsssdm  33884  ordtrestNEW  33888  ordtrest2NEW  33890
  Copyright terms: Public domain W3C validator