Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressprs Structured version   Visualization version   GIF version

Theorem ressprs 31241
Description: The restriction of a proset is a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypothesis
Ref Expression
ressprs.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
ressprs ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )

Proof of Theorem ressprs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7310 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ V)
2 simp-4l 780 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝐾 ∈ Proset )
3 simp-4r 781 . . . . . . . . 9 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝐴𝐵)
4 simpllr 773 . . . . . . . . 9 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐴)
53, 4sseldd 3922 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐵)
62, 5jca 512 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝐾 ∈ Proset ∧ 𝑥𝐵))
7 simplr 766 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑦𝐴)
83, 7sseldd 3922 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑦𝐵)
9 simpr 485 . . . . . . . 8 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑧𝐴)
103, 9sseldd 3922 . . . . . . 7 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑧𝐵)
11 ressprs.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
12 eqid 2738 . . . . . . . . . . . 12 (le‘𝐾) = (le‘𝐾)
1311, 12isprs 18015 . . . . . . . . . . 11 (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
1413simprbi 497 . . . . . . . . . 10 (𝐾 ∈ Proset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1514r19.21bi 3134 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ∀𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1615r19.21bi 3134 . . . . . . . 8 (((𝐾 ∈ Proset ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1716r19.21bi 3134 . . . . . . 7 ((((𝐾 ∈ Proset ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
186, 8, 10, 17syl21anc 835 . . . . . 6 (((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1918ralrimiva 3103 . . . . 5 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ∀𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2019ralrimiva 3103 . . . 4 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥𝐴) → ∀𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2120ralrimiva 3103 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
22 eqid 2738 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
2322, 11ressbas2 16949 . . . . . 6 (𝐴𝐵𝐴 = (Base‘(𝐾s 𝐴)))
2423adantl 482 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐴 = (Base‘(𝐾s 𝐴)))
2511fvexi 6788 . . . . . . . . . . . 12 𝐵 ∈ V
2625ssex 5245 . . . . . . . . . . 11 (𝐴𝐵𝐴 ∈ V)
2722, 12ressle 17090 . . . . . . . . . . 11 (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾s 𝐴)))
2826, 27syl 17 . . . . . . . . . 10 (𝐴𝐵 → (le‘𝐾) = (le‘(𝐾s 𝐴)))
2928adantl 482 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3029breqd 5085 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑥𝑥(le‘(𝐾s 𝐴))𝑥))
3129breqd 5085 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑦𝑥(le‘(𝐾s 𝐴))𝑦))
3229breqd 5085 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑦(le‘𝐾)𝑧𝑦(le‘(𝐾s 𝐴))𝑧))
3331, 32anbi12d 631 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) ↔ (𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧)))
3429breqd 5085 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑧𝑥(le‘(𝐾s 𝐴))𝑧))
3533, 34imbi12d 345 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧) ↔ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧)))
3630, 35anbi12d 631 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ (𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3724, 36raleqbidv 3336 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3824, 37raleqbidv 3336 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3924, 38raleqbidv 3336 . . . 4 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4039anbi2d 629 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (((𝐾s 𝐴) ∈ V ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) ↔ ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧)))))
411, 21, 40mpbi2and 709 . 2 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
42 eqid 2738 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
43 eqid 2738 . . 3 (le‘(𝐾s 𝐴)) = (le‘(𝐾s 𝐴))
4442, 43isprs 18015 . 2 ((𝐾s 𝐴) ∈ Proset ↔ ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4541, 44sylibr 233 1 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  lecple 16969   Proset cproset 18011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-ple 16982  df-proset 18013
This theorem is referenced by:  prsssdm  31867  ordtrestNEW  31871  ordtrest2NEW  31873
  Copyright terms: Public domain W3C validator