MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epttop Structured version   Visualization version   GIF version

Theorem epttop 22157
Description: The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
epttop ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ (TopOn‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem epttop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab 4011 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴)))
2 eleq2 2829 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝑥𝑃 𝑦))
3 eqeq1 2744 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝐴 𝑦 = 𝐴))
42, 3imbi12d 345 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = 𝐴) ↔ (𝑃 𝑦 𝑦 = 𝐴)))
5 simprl 768 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → 𝑦 ⊆ 𝒫 𝐴)
6 sspwuni 5034 . . . . . . . . 9 (𝑦 ⊆ 𝒫 𝐴 𝑦𝐴)
75, 6sylib 217 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → 𝑦𝐴)
8 vuniex 7586 . . . . . . . . 9 𝑦 ∈ V
98elpw 4543 . . . . . . . 8 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
107, 9sylibr 233 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → 𝑦 ∈ 𝒫 𝐴)
11 eluni2 4849 . . . . . . . . . 10 (𝑃 𝑦 ↔ ∃𝑥𝑦 𝑃𝑥)
12 r19.29 3186 . . . . . . . . . . . . 13 ((∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴) ∧ ∃𝑥𝑦 𝑃𝑥) → ∃𝑥𝑦 ((𝑃𝑥𝑥 = 𝐴) ∧ 𝑃𝑥))
13 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ (𝑃𝑥𝑥 = 𝐴)) → (𝑃𝑥𝑥 = 𝐴))
1413impr 455 . . . . . . . . . . . . . . 15 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = 𝐴) ∧ 𝑃𝑥)) → 𝑥 = 𝐴)
15 elssuni 4877 . . . . . . . . . . . . . . . 16 (𝑥𝑦𝑥 𝑦)
1615adantr 481 . . . . . . . . . . . . . . 15 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = 𝐴) ∧ 𝑃𝑥)) → 𝑥 𝑦)
1714, 16eqsstrrd 3965 . . . . . . . . . . . . . 14 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = 𝐴) ∧ 𝑃𝑥)) → 𝐴 𝑦)
1817rexlimiva 3212 . . . . . . . . . . . . 13 (∃𝑥𝑦 ((𝑃𝑥𝑥 = 𝐴) ∧ 𝑃𝑥) → 𝐴 𝑦)
1912, 18syl 17 . . . . . . . . . . . 12 ((∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴) ∧ ∃𝑥𝑦 𝑃𝑥) → 𝐴 𝑦)
2019ex 413 . . . . . . . . . . 11 (∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴) → (∃𝑥𝑦 𝑃𝑥𝐴 𝑦))
2120ad2antll 726 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → (∃𝑥𝑦 𝑃𝑥𝐴 𝑦))
2211, 21syl5bi 241 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → (𝑃 𝑦𝐴 𝑦))
2322, 7jctild 526 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → (𝑃 𝑦 → ( 𝑦𝐴𝐴 𝑦)))
24 eqss 3941 . . . . . . . 8 ( 𝑦 = 𝐴 ↔ ( 𝑦𝐴𝐴 𝑦))
2523, 24syl6ibr 251 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → (𝑃 𝑦 𝑦 = 𝐴))
264, 10, 25elrabd 3628 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
2726ex 413 . . . . 5 ((𝐴𝑉𝑃𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴)) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}))
281, 27syl5bi 241 . . . 4 ((𝐴𝑉𝑃𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}))
2928alrimiv 1934 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}))
30 inss1 4168 . . . . . . . . 9 (𝑦𝑧) ⊆ 𝑦
31 simprll 776 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → 𝑦 ∈ 𝒫 𝐴)
3231elpwid 4550 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → 𝑦𝐴)
3330, 32sstrid 3937 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → (𝑦𝑧) ⊆ 𝐴)
34 vex 3435 . . . . . . . . . 10 𝑦 ∈ V
3534inex1 5245 . . . . . . . . 9 (𝑦𝑧) ∈ V
3635elpw 4543 . . . . . . . 8 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
3733, 36sylibr 233 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → (𝑦𝑧) ∈ 𝒫 𝐴)
38 elin 3908 . . . . . . . 8 (𝑃 ∈ (𝑦𝑧) ↔ (𝑃𝑦𝑃𝑧))
39 simprlr 777 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → (𝑃𝑦𝑦 = 𝐴))
40 simprrr 779 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → (𝑃𝑧𝑧 = 𝐴))
4139, 40anim12d 609 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → ((𝑃𝑦𝑃𝑧) → (𝑦 = 𝐴𝑧 = 𝐴)))
42 ineq12 4147 . . . . . . . . . 10 ((𝑦 = 𝐴𝑧 = 𝐴) → (𝑦𝑧) = (𝐴𝐴))
43 inidm 4158 . . . . . . . . . 10 (𝐴𝐴) = 𝐴
4442, 43eqtrdi 2796 . . . . . . . . 9 ((𝑦 = 𝐴𝑧 = 𝐴) → (𝑦𝑧) = 𝐴)
4541, 44syl6 35 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → ((𝑃𝑦𝑃𝑧) → (𝑦𝑧) = 𝐴))
4638, 45syl5bi 241 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → (𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = 𝐴))
4737, 46jca 512 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = 𝐴)))
4847ex 413 . . . . 5 ((𝐴𝑉𝑃𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴))) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = 𝐴))))
49 eleq2 2829 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
50 eqeq1 2744 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
5149, 50imbi12d 345 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = 𝐴) ↔ (𝑃𝑦𝑦 = 𝐴)))
5251elrab 3626 . . . . . 6 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)))
53 eleq2 2829 . . . . . . . 8 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
54 eqeq1 2744 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 𝐴𝑧 = 𝐴))
5553, 54imbi12d 345 . . . . . . 7 (𝑥 = 𝑧 → ((𝑃𝑥𝑥 = 𝐴) ↔ (𝑃𝑧𝑧 = 𝐴)))
5655elrab 3626 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))
5752, 56anbi12i 627 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴))))
58 eleq2 2829 . . . . . . 7 (𝑥 = (𝑦𝑧) → (𝑃𝑥𝑃 ∈ (𝑦𝑧)))
59 eqeq1 2744 . . . . . . 7 (𝑥 = (𝑦𝑧) → (𝑥 = 𝐴 ↔ (𝑦𝑧) = 𝐴))
6058, 59imbi12d 345 . . . . . 6 (𝑥 = (𝑦𝑧) → ((𝑃𝑥𝑥 = 𝐴) ↔ (𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = 𝐴)))
6160elrab 3626 . . . . 5 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = 𝐴)))
6248, 57, 613imtr4g 296 . . . 4 ((𝐴𝑉𝑃𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}))
6362ralrimivv 3116 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
64 pwexg 5305 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
6564adantr 481 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝒫 𝐴 ∈ V)
66 rabexg 5259 . . . . 5 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ V)
6765, 66syl 17 . . . 4 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ V)
68 istopg 22042 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})))
6967, 68syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})))
7029, 63, 69mpbir2and 710 . 2 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ Top)
71 eleq2 2829 . . . . . 6 (𝑥 = 𝐴 → (𝑃𝑥𝑃𝐴))
72 eqeq1 2744 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝐴𝐴 = 𝐴))
7371, 72imbi12d 345 . . . . 5 (𝑥 = 𝐴 → ((𝑃𝑥𝑥 = 𝐴) ↔ (𝑃𝐴𝐴 = 𝐴)))
74 pwidg 4561 . . . . . 6 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
7574adantr 481 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ 𝒫 𝐴)
76 eqidd 2741 . . . . . 6 ((𝐴𝑉𝑃𝐴) → 𝐴 = 𝐴)
7776a1d 25 . . . . 5 ((𝐴𝑉𝑃𝐴) → (𝑃𝐴𝐴 = 𝐴))
7873, 75, 77elrabd 3628 . . . 4 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
79 elssuni 4877 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
8078, 79syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
81 ssrab2 4018 . . . . 5 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ⊆ 𝒫 𝐴
82 sspwuni 5034 . . . . 5 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ⊆ 𝐴)
8381, 82mpbi 229 . . . 4 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ⊆ 𝐴
8483a1i 11 . . 3 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ⊆ 𝐴)
8580, 84eqssd 3943 . 2 ((𝐴𝑉𝑃𝐴) → 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
86 istopon 22059 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}))
8770, 85, 86sylanbrc 583 1 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1540   = wceq 1542  wcel 2110  wral 3066  wrex 3067  {crab 3070  Vcvv 3431  cin 3891  wss 3892  𝒫 cpw 4539   cuni 4845  cfv 6432  Topctop 22040  TopOnctopon 22057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fv 6440  df-top 22041  df-topon 22058
This theorem is referenced by:  dfac14lem  22766  dfac14  22767
  Copyright terms: Public domain W3C validator