Step | Hyp | Ref
| Expression |
1 | | ssrab 4006 |
. . . . 5
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) |
2 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ∪ 𝑦)) |
3 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → (𝑥 = 𝐴 ↔ ∪ 𝑦 = 𝐴)) |
4 | 2, 3 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
𝐴))) |
5 | | simprl 768 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → 𝑦 ⊆ 𝒫 𝐴) |
6 | | sspwuni 5029 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝒫 𝐴 ↔ ∪ 𝑦
⊆ 𝐴) |
7 | 5, 6 | sylib 217 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ⊆ 𝐴) |
8 | | vuniex 7592 |
. . . . . . . . 9
⊢ ∪ 𝑦
∈ V |
9 | 8 | elpw 4537 |
. . . . . . . 8
⊢ (∪ 𝑦
∈ 𝒫 𝐴 ↔
∪ 𝑦 ⊆ 𝐴) |
10 | 7, 9 | sylibr 233 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ∈ 𝒫 𝐴) |
11 | | eluni2 4843 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ∪ 𝑦
↔ ∃𝑥 ∈
𝑦 𝑃 ∈ 𝑥) |
12 | | r19.29 3184 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ ∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥) → ∃𝑥 ∈ 𝑦 ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) |
13 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) → (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) |
14 | 13 | impr 455 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝑥 = 𝐴) |
15 | | elssuni 4871 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝑦) |
16 | 15 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝑥 ⊆ ∪ 𝑦) |
17 | 14, 16 | eqsstrrd 3960 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝐴 ⊆ ∪ 𝑦) |
18 | 17 | rexlimiva 3210 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝑦 ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥) → 𝐴 ⊆ ∪ 𝑦) |
19 | 12, 18 | syl 17 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ ∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥) → 𝐴 ⊆ ∪ 𝑦) |
20 | 19 | ex 413 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) → (∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦)) |
21 | 20 | ad2antll 726 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦)) |
22 | 11, 21 | syl5bi 241 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → 𝐴 ⊆ ∪ 𝑦)) |
23 | 22, 7 | jctild 526 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → (∪ 𝑦
⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))) |
24 | | eqss 3936 |
. . . . . . . 8
⊢ (∪ 𝑦 =
𝐴 ↔ (∪ 𝑦
⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) |
25 | 23, 24 | syl6ibr 251 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
𝐴)) |
26 | 4, 10, 25 | elrabd 3626 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
27 | 26 | ex 413 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
28 | 1, 27 | syl5bi 241 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
29 | 28 | alrimiv 1930 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
30 | | inss1 4162 |
. . . . . . . . 9
⊢ (𝑦 ∩ 𝑧) ⊆ 𝑦 |
31 | | simprll 776 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → 𝑦 ∈ 𝒫 𝐴) |
32 | 31 | elpwid 4544 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → 𝑦 ⊆ 𝐴) |
33 | 30, 32 | sstrid 3932 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑦 ∩ 𝑧) ⊆ 𝐴) |
34 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
35 | 34 | inex1 5241 |
. . . . . . . . 9
⊢ (𝑦 ∩ 𝑧) ∈ V |
36 | 35 | elpw 4537 |
. . . . . . . 8
⊢ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ↔ (𝑦 ∩ 𝑧) ⊆ 𝐴) |
37 | 33, 36 | sylibr 233 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
38 | | elin 3903 |
. . . . . . . 8
⊢ (𝑃 ∈ (𝑦 ∩ 𝑧) ↔ (𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧)) |
39 | | simprlr 777 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) |
40 | | simprrr 779 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)) |
41 | 39, 40 | anim12d 609 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧) → (𝑦 = 𝐴 ∧ 𝑧 = 𝐴))) |
42 | | ineq12 4141 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐴) → (𝑦 ∩ 𝑧) = (𝐴 ∩ 𝐴)) |
43 | | inidm 4152 |
. . . . . . . . . 10
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
44 | 42, 43 | eqtrdi 2794 |
. . . . . . . . 9
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐴) → (𝑦 ∩ 𝑧) = 𝐴) |
45 | 41, 44 | syl6 35 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)) |
46 | 38, 45 | syl5bi 241 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)) |
47 | 37, 46 | jca 512 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) |
48 | 47 | ex 413 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)))) |
49 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) |
50 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) |
51 | 49, 50 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴))) |
52 | 51 | elrab 3624 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴))) |
53 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧)) |
54 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 = 𝐴 ↔ 𝑧 = 𝐴)) |
55 | 53, 54 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) |
56 | 55 | elrab 3624 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) |
57 | 52, 56 | anbi12i 627 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) |
58 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑦 ∩ 𝑧))) |
59 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑥 = 𝐴 ↔ (𝑦 ∩ 𝑧) = 𝐴)) |
60 | 58, 59 | imbi12d 345 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∩ 𝑧) → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) |
61 | 60 | elrab 3624 |
. . . . 5
⊢ ((𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) |
62 | 48, 57, 61 | 3imtr4g 296 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
63 | 62 | ralrimivv 3122 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
64 | | pwexg 5301 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
65 | 64 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝒫 𝐴 ∈ V) |
66 | | rabexg 5255 |
. . . . 5
⊢
(𝒫 𝐴 ∈
V → {𝑥 ∈
𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V) |
67 | 65, 66 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V) |
68 | | istopg 22044 |
. . . 4
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}))) |
69 | 67, 68 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}))) |
70 | 29, 63, 69 | mpbir2and 710 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top) |
71 | | eleq2 2827 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝐴)) |
72 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) |
73 | 71, 72 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝐴 → 𝐴 = 𝐴))) |
74 | | pwidg 4555 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
75 | 74 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ∈ 𝒫 𝐴) |
76 | | eqidd 2739 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 = 𝐴) |
77 | 76 | a1d 25 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 → 𝐴 = 𝐴)) |
78 | 73, 75, 77 | elrabd 3626 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
79 | | elssuni 4871 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
80 | 78, 79 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
81 | | ssrab2 4013 |
. . . . 5
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝒫 𝐴 |
82 | | sspwuni 5029 |
. . . . 5
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴) |
83 | 81, 82 | mpbi 229 |
. . . 4
⊢ ∪ {𝑥
∈ 𝒫 𝐴 ∣
(𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴 |
84 | 83 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴) |
85 | 80, 84 | eqssd 3938 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
86 | | istopon 22061 |
. 2
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ∧ 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
87 | 70, 85, 86 | sylanbrc 583 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴)) |