Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  epttop Structured version   Visualization version   GIF version

Theorem epttop 21612
 Description: The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
epttop ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ (TopOn‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem epttop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab 4024 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴)))
2 eleq2 2902 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝑥𝑃 𝑦))
3 eqeq1 2826 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝐴 𝑦 = 𝐴))
42, 3imbi12d 348 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = 𝐴) ↔ (𝑃 𝑦 𝑦 = 𝐴)))
5 simprl 770 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → 𝑦 ⊆ 𝒫 𝐴)
6 sspwuni 4997 . . . . . . . . 9 (𝑦 ⊆ 𝒫 𝐴 𝑦𝐴)
75, 6sylib 221 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → 𝑦𝐴)
8 vuniex 7450 . . . . . . . . 9 𝑦 ∈ V
98elpw 4515 . . . . . . . 8 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
107, 9sylibr 237 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → 𝑦 ∈ 𝒫 𝐴)
11 eluni2 4817 . . . . . . . . . 10 (𝑃 𝑦 ↔ ∃𝑥𝑦 𝑃𝑥)
12 r19.29 3242 . . . . . . . . . . . . 13 ((∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴) ∧ ∃𝑥𝑦 𝑃𝑥) → ∃𝑥𝑦 ((𝑃𝑥𝑥 = 𝐴) ∧ 𝑃𝑥))
13 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ (𝑃𝑥𝑥 = 𝐴)) → (𝑃𝑥𝑥 = 𝐴))
1413impr 458 . . . . . . . . . . . . . . 15 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = 𝐴) ∧ 𝑃𝑥)) → 𝑥 = 𝐴)
15 elssuni 4843 . . . . . . . . . . . . . . . 16 (𝑥𝑦𝑥 𝑦)
1615adantr 484 . . . . . . . . . . . . . . 15 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = 𝐴) ∧ 𝑃𝑥)) → 𝑥 𝑦)
1714, 16eqsstrrd 3981 . . . . . . . . . . . . . 14 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = 𝐴) ∧ 𝑃𝑥)) → 𝐴 𝑦)
1817rexlimiva 3267 . . . . . . . . . . . . 13 (∃𝑥𝑦 ((𝑃𝑥𝑥 = 𝐴) ∧ 𝑃𝑥) → 𝐴 𝑦)
1912, 18syl 17 . . . . . . . . . . . 12 ((∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴) ∧ ∃𝑥𝑦 𝑃𝑥) → 𝐴 𝑦)
2019ex 416 . . . . . . . . . . 11 (∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴) → (∃𝑥𝑦 𝑃𝑥𝐴 𝑦))
2120ad2antll 728 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → (∃𝑥𝑦 𝑃𝑥𝐴 𝑦))
2211, 21syl5bi 245 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → (𝑃 𝑦𝐴 𝑦))
2322, 7jctild 529 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → (𝑃 𝑦 → ( 𝑦𝐴𝐴 𝑦)))
24 eqss 3957 . . . . . . . 8 ( 𝑦 = 𝐴 ↔ ( 𝑦𝐴𝐴 𝑦))
2523, 24syl6ibr 255 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → (𝑃 𝑦 𝑦 = 𝐴))
264, 10, 25elrabd 3657 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴))) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
2726ex 416 . . . . 5 ((𝐴𝑉𝑃𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = 𝐴)) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}))
281, 27syl5bi 245 . . . 4 ((𝐴𝑉𝑃𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}))
2928alrimiv 1928 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}))
30 inss1 4179 . . . . . . . . 9 (𝑦𝑧) ⊆ 𝑦
31 simprll 778 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → 𝑦 ∈ 𝒫 𝐴)
3231elpwid 4522 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → 𝑦𝐴)
3330, 32sstrid 3953 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → (𝑦𝑧) ⊆ 𝐴)
34 vex 3472 . . . . . . . . . 10 𝑦 ∈ V
3534inex1 5197 . . . . . . . . 9 (𝑦𝑧) ∈ V
3635elpw 4515 . . . . . . . 8 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
3733, 36sylibr 237 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → (𝑦𝑧) ∈ 𝒫 𝐴)
38 elin 3924 . . . . . . . 8 (𝑃 ∈ (𝑦𝑧) ↔ (𝑃𝑦𝑃𝑧))
39 simprlr 779 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → (𝑃𝑦𝑦 = 𝐴))
40 simprrr 781 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → (𝑃𝑧𝑧 = 𝐴))
4139, 40anim12d 611 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → ((𝑃𝑦𝑃𝑧) → (𝑦 = 𝐴𝑧 = 𝐴)))
42 ineq12 4158 . . . . . . . . . 10 ((𝑦 = 𝐴𝑧 = 𝐴) → (𝑦𝑧) = (𝐴𝐴))
43 inidm 4169 . . . . . . . . . 10 (𝐴𝐴) = 𝐴
4442, 43syl6eq 2873 . . . . . . . . 9 ((𝑦 = 𝐴𝑧 = 𝐴) → (𝑦𝑧) = 𝐴)
4541, 44syl6 35 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → ((𝑃𝑦𝑃𝑧) → (𝑦𝑧) = 𝐴))
4638, 45syl5bi 245 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → (𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = 𝐴))
4737, 46jca 515 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = 𝐴)))
4847ex 416 . . . . 5 ((𝐴𝑉𝑃𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴))) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = 𝐴))))
49 eleq2 2902 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
50 eqeq1 2826 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
5149, 50imbi12d 348 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = 𝐴) ↔ (𝑃𝑦𝑦 = 𝐴)))
5251elrab 3655 . . . . . 6 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)))
53 eleq2 2902 . . . . . . . 8 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
54 eqeq1 2826 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 𝐴𝑧 = 𝐴))
5553, 54imbi12d 348 . . . . . . 7 (𝑥 = 𝑧 → ((𝑃𝑥𝑥 = 𝐴) ↔ (𝑃𝑧𝑧 = 𝐴)))
5655elrab 3655 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴)))
5752, 56anbi12i 629 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = 𝐴))))
58 eleq2 2902 . . . . . . 7 (𝑥 = (𝑦𝑧) → (𝑃𝑥𝑃 ∈ (𝑦𝑧)))
59 eqeq1 2826 . . . . . . 7 (𝑥 = (𝑦𝑧) → (𝑥 = 𝐴 ↔ (𝑦𝑧) = 𝐴))
6058, 59imbi12d 348 . . . . . 6 (𝑥 = (𝑦𝑧) → ((𝑃𝑥𝑥 = 𝐴) ↔ (𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = 𝐴)))
6160elrab 3655 . . . . 5 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = 𝐴)))
6248, 57, 613imtr4g 299 . . . 4 ((𝐴𝑉𝑃𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}))
6362ralrimivv 3180 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
64 pwexg 5256 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
6564adantr 484 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝒫 𝐴 ∈ V)
66 rabexg 5210 . . . . 5 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ V)
6765, 66syl 17 . . . 4 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ V)
68 istopg 21498 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})))
6967, 68syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})))
7029, 63, 69mpbir2and 712 . 2 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ Top)
71 eleq2 2902 . . . . . 6 (𝑥 = 𝐴 → (𝑃𝑥𝑃𝐴))
72 eqeq1 2826 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝐴𝐴 = 𝐴))
7371, 72imbi12d 348 . . . . 5 (𝑥 = 𝐴 → ((𝑃𝑥𝑥 = 𝐴) ↔ (𝑃𝐴𝐴 = 𝐴)))
74 pwidg 4533 . . . . . 6 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
7574adantr 484 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ 𝒫 𝐴)
76 eqidd 2823 . . . . . 6 ((𝐴𝑉𝑃𝐴) → 𝐴 = 𝐴)
7776a1d 25 . . . . 5 ((𝐴𝑉𝑃𝐴) → (𝑃𝐴𝐴 = 𝐴))
7873, 75, 77elrabd 3657 . . . 4 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
79 elssuni 4843 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
8078, 79syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
81 ssrab2 4031 . . . . 5 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ⊆ 𝒫 𝐴
82 sspwuni 4997 . . . . 5 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ⊆ 𝐴)
8381, 82mpbi 233 . . . 4 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ⊆ 𝐴
8483a1i 11 . . 3 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ⊆ 𝐴)
8580, 84eqssd 3959 . 2 ((𝐴𝑉𝑃𝐴) → 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)})
86 istopon 21515 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)}))
8770, 85, 86sylanbrc 586 1 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ (TopOn‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2114  ∀wral 3130  ∃wrex 3131  {crab 3134  Vcvv 3469   ∩ cin 3907   ⊆ wss 3908  𝒫 cpw 4511  ∪ cuni 4813  ‘cfv 6334  Topctop 21496  TopOnctopon 21513 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-iota 6293  df-fun 6336  df-fv 6342  df-top 21497  df-topon 21514 This theorem is referenced by:  dfac14lem  22220  dfac14  22221
 Copyright terms: Public domain W3C validator