| Step | Hyp | Ref
| Expression |
| 1 | | ssrab 4053 |
. . . . 5
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) |
| 2 | | eleq2 2824 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ∪ 𝑦)) |
| 3 | | eqeq1 2740 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → (𝑥 = 𝐴 ↔ ∪ 𝑦 = 𝐴)) |
| 4 | 2, 3 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
𝐴))) |
| 5 | | simprl 770 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → 𝑦 ⊆ 𝒫 𝐴) |
| 6 | | sspwuni 5081 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝒫 𝐴 ↔ ∪ 𝑦
⊆ 𝐴) |
| 7 | 5, 6 | sylib 218 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ⊆ 𝐴) |
| 8 | | vuniex 7738 |
. . . . . . . . 9
⊢ ∪ 𝑦
∈ V |
| 9 | 8 | elpw 4584 |
. . . . . . . 8
⊢ (∪ 𝑦
∈ 𝒫 𝐴 ↔
∪ 𝑦 ⊆ 𝐴) |
| 10 | 7, 9 | sylibr 234 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ∈ 𝒫 𝐴) |
| 11 | | eluni2 4892 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ∪ 𝑦
↔ ∃𝑥 ∈
𝑦 𝑃 ∈ 𝑥) |
| 12 | | r19.29 3102 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ ∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥) → ∃𝑥 ∈ 𝑦 ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) |
| 13 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) → (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) |
| 14 | 13 | impr 454 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝑥 = 𝐴) |
| 15 | | elssuni 4918 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝑦) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝑥 ⊆ ∪ 𝑦) |
| 17 | 14, 16 | eqsstrrd 3999 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝐴 ⊆ ∪ 𝑦) |
| 18 | 17 | rexlimiva 3134 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝑦 ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥) → 𝐴 ⊆ ∪ 𝑦) |
| 19 | 12, 18 | syl 17 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ ∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥) → 𝐴 ⊆ ∪ 𝑦) |
| 20 | 19 | ex 412 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) → (∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦)) |
| 21 | 20 | ad2antll 729 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦)) |
| 22 | 11, 21 | biimtrid 242 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → 𝐴 ⊆ ∪ 𝑦)) |
| 23 | 22, 7 | jctild 525 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → (∪ 𝑦
⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))) |
| 24 | | eqss 3979 |
. . . . . . . 8
⊢ (∪ 𝑦 =
𝐴 ↔ (∪ 𝑦
⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) |
| 25 | 23, 24 | imbitrrdi 252 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
𝐴)) |
| 26 | 4, 10, 25 | elrabd 3678 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
| 27 | 26 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
| 28 | 1, 27 | biimtrid 242 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
| 29 | 28 | alrimiv 1927 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
| 30 | | inss1 4217 |
. . . . . . . . 9
⊢ (𝑦 ∩ 𝑧) ⊆ 𝑦 |
| 31 | | simprll 778 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → 𝑦 ∈ 𝒫 𝐴) |
| 32 | 31 | elpwid 4589 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → 𝑦 ⊆ 𝐴) |
| 33 | 30, 32 | sstrid 3975 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑦 ∩ 𝑧) ⊆ 𝐴) |
| 34 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 35 | 34 | inex1 5292 |
. . . . . . . . 9
⊢ (𝑦 ∩ 𝑧) ∈ V |
| 36 | 35 | elpw 4584 |
. . . . . . . 8
⊢ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ↔ (𝑦 ∩ 𝑧) ⊆ 𝐴) |
| 37 | 33, 36 | sylibr 234 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
| 38 | | elin 3947 |
. . . . . . . 8
⊢ (𝑃 ∈ (𝑦 ∩ 𝑧) ↔ (𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧)) |
| 39 | | simprlr 779 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) |
| 40 | | simprrr 781 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)) |
| 41 | 39, 40 | anim12d 609 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧) → (𝑦 = 𝐴 ∧ 𝑧 = 𝐴))) |
| 42 | | ineq12 4195 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐴) → (𝑦 ∩ 𝑧) = (𝐴 ∩ 𝐴)) |
| 43 | | inidm 4207 |
. . . . . . . . . 10
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 44 | 42, 43 | eqtrdi 2787 |
. . . . . . . . 9
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐴) → (𝑦 ∩ 𝑧) = 𝐴) |
| 45 | 41, 44 | syl6 35 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)) |
| 46 | 38, 45 | biimtrid 242 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)) |
| 47 | 37, 46 | jca 511 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) |
| 48 | 47 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)))) |
| 49 | | eleq2 2824 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) |
| 50 | | eqeq1 2740 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) |
| 51 | 49, 50 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴))) |
| 52 | 51 | elrab 3676 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴))) |
| 53 | | eleq2 2824 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧)) |
| 54 | | eqeq1 2740 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 = 𝐴 ↔ 𝑧 = 𝐴)) |
| 55 | 53, 54 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) |
| 56 | 55 | elrab 3676 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) |
| 57 | 52, 56 | anbi12i 628 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) |
| 58 | | eleq2 2824 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑦 ∩ 𝑧))) |
| 59 | | eqeq1 2740 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑥 = 𝐴 ↔ (𝑦 ∩ 𝑧) = 𝐴)) |
| 60 | 58, 59 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∩ 𝑧) → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) |
| 61 | 60 | elrab 3676 |
. . . . 5
⊢ ((𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) |
| 62 | 48, 57, 61 | 3imtr4g 296 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
| 63 | 62 | ralrimivv 3186 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
| 64 | | pwexg 5353 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| 65 | 64 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝒫 𝐴 ∈ V) |
| 66 | | rabexg 5312 |
. . . . 5
⊢
(𝒫 𝐴 ∈
V → {𝑥 ∈
𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V) |
| 67 | 65, 66 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V) |
| 68 | | istopg 22838 |
. . . 4
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}))) |
| 69 | 67, 68 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}))) |
| 70 | 29, 63, 69 | mpbir2and 713 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top) |
| 71 | | eleq2 2824 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝐴)) |
| 72 | | eqeq1 2740 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) |
| 73 | 71, 72 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝐴 → 𝐴 = 𝐴))) |
| 74 | | pwidg 4600 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| 75 | 74 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ∈ 𝒫 𝐴) |
| 76 | | eqidd 2737 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 = 𝐴) |
| 77 | 76 | a1d 25 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 → 𝐴 = 𝐴)) |
| 78 | 73, 75, 77 | elrabd 3678 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
| 79 | | elssuni 4918 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
| 80 | 78, 79 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
| 81 | | ssrab2 4060 |
. . . . 5
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝒫 𝐴 |
| 82 | | sspwuni 5081 |
. . . . 5
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴) |
| 83 | 81, 82 | mpbi 230 |
. . . 4
⊢ ∪ {𝑥
∈ 𝒫 𝐴 ∣
(𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴 |
| 84 | 83 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴) |
| 85 | 80, 84 | eqssd 3981 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
| 86 | | istopon 22855 |
. 2
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ∧ 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
| 87 | 70, 85, 86 | sylanbrc 583 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴)) |