Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtss Structured version   Visualization version   GIF version

Theorem mvtss 34840
Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtss.f 𝐹 = (mVT‘𝑇)
mvtss.k 𝐾 = (mTC‘𝑇)
Assertion
Ref Expression
mvtss (𝑇 ∈ mFS → 𝐹𝐾)

Proof of Theorem mvtss
StepHypRef Expression
1 mvtss.f . . 3 𝐹 = (mVT‘𝑇)
2 eqid 2730 . . 3 (mType‘𝑇) = (mType‘𝑇)
31, 2mvtval 34787 . 2 𝐹 = ran (mType‘𝑇)
4 eqid 2730 . . . 4 (mVR‘𝑇) = (mVR‘𝑇)
5 mvtss.k . . . 4 𝐾 = (mTC‘𝑇)
64, 5, 2mtyf2 34838 . . 3 (𝑇 ∈ mFS → (mType‘𝑇):(mVR‘𝑇)⟶𝐾)
76frnd 6726 . 2 (𝑇 ∈ mFS → ran (mType‘𝑇) ⊆ 𝐾)
83, 7eqsstrid 4031 1 (𝑇 ∈ mFS → 𝐹𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wss 3949  ran crn 5678  cfv 6544  mVRcmvar 34748  mTypecmty 34749  mVTcmvt 34750  mTCcmtc 34751  mFScmfs 34763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-mvt 34772  df-mfs 34783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator