![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvtss | Structured version Visualization version GIF version |
Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvtss.f | ⊢ 𝐹 = (mVT‘𝑇) |
mvtss.k | ⊢ 𝐾 = (mTC‘𝑇) |
Ref | Expression |
---|---|
mvtss | ⊢ (𝑇 ∈ mFS → 𝐹 ⊆ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvtss.f | . . 3 ⊢ 𝐹 = (mVT‘𝑇) | |
2 | eqid 2797 | . . 3 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
3 | 1, 2 | mvtval 31906 | . 2 ⊢ 𝐹 = ran (mType‘𝑇) |
4 | eqid 2797 | . . . 4 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
5 | mvtss.k | . . . 4 ⊢ 𝐾 = (mTC‘𝑇) | |
6 | 4, 5, 2 | mtyf2 31957 | . . 3 ⊢ (𝑇 ∈ mFS → (mType‘𝑇):(mVR‘𝑇)⟶𝐾) |
7 | 6 | frnd 6261 | . 2 ⊢ (𝑇 ∈ mFS → ran (mType‘𝑇) ⊆ 𝐾) |
8 | 3, 7 | syl5eqss 3843 | 1 ⊢ (𝑇 ∈ mFS → 𝐹 ⊆ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ⊆ wss 3767 ran crn 5311 ‘cfv 6099 mVRcmvar 31867 mTypecmty 31868 mVTcmvt 31869 mTCcmtc 31870 mFScmfs 31882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-fv 6107 df-mvt 31891 df-mfs 31902 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |