Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvtss | Structured version Visualization version GIF version |
Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvtss.f | ⊢ 𝐹 = (mVT‘𝑇) |
mvtss.k | ⊢ 𝐾 = (mTC‘𝑇) |
Ref | Expression |
---|---|
mvtss | ⊢ (𝑇 ∈ mFS → 𝐹 ⊆ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvtss.f | . . 3 ⊢ 𝐹 = (mVT‘𝑇) | |
2 | eqid 2739 | . . 3 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
3 | 1, 2 | mvtval 33337 | . 2 ⊢ 𝐹 = ran (mType‘𝑇) |
4 | eqid 2739 | . . . 4 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
5 | mvtss.k | . . . 4 ⊢ 𝐾 = (mTC‘𝑇) | |
6 | 4, 5, 2 | mtyf2 33388 | . . 3 ⊢ (𝑇 ∈ mFS → (mType‘𝑇):(mVR‘𝑇)⟶𝐾) |
7 | 6 | frnd 6589 | . 2 ⊢ (𝑇 ∈ mFS → ran (mType‘𝑇) ⊆ 𝐾) |
8 | 3, 7 | eqsstrid 3966 | 1 ⊢ (𝑇 ∈ mFS → 𝐹 ⊆ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ⊆ wss 3884 ran crn 5580 ‘cfv 6415 mVRcmvar 33298 mTypecmty 33299 mVTcmvt 33300 mTCcmtc 33301 mFScmfs 33313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-fv 6423 df-mvt 33322 df-mfs 33333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |