Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtss Structured version   Visualization version   GIF version

Theorem mvtss 33515
Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtss.f 𝐹 = (mVT‘𝑇)
mvtss.k 𝐾 = (mTC‘𝑇)
Assertion
Ref Expression
mvtss (𝑇 ∈ mFS → 𝐹𝐾)

Proof of Theorem mvtss
StepHypRef Expression
1 mvtss.f . . 3 𝐹 = (mVT‘𝑇)
2 eqid 2738 . . 3 (mType‘𝑇) = (mType‘𝑇)
31, 2mvtval 33462 . 2 𝐹 = ran (mType‘𝑇)
4 eqid 2738 . . . 4 (mVR‘𝑇) = (mVR‘𝑇)
5 mvtss.k . . . 4 𝐾 = (mTC‘𝑇)
64, 5, 2mtyf2 33513 . . 3 (𝑇 ∈ mFS → (mType‘𝑇):(mVR‘𝑇)⟶𝐾)
76frnd 6608 . 2 (𝑇 ∈ mFS → ran (mType‘𝑇) ⊆ 𝐾)
83, 7eqsstrid 3969 1 (𝑇 ∈ mFS → 𝐹𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wss 3887  ran crn 5590  cfv 6433  mVRcmvar 33423  mTypecmty 33424  mVTcmvt 33425  mTCcmtc 33426  mFScmfs 33438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mvt 33447  df-mfs 33458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator