Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtss Structured version   Visualization version   GIF version

Theorem mvtss 33390
Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtss.f 𝐹 = (mVT‘𝑇)
mvtss.k 𝐾 = (mTC‘𝑇)
Assertion
Ref Expression
mvtss (𝑇 ∈ mFS → 𝐹𝐾)

Proof of Theorem mvtss
StepHypRef Expression
1 mvtss.f . . 3 𝐹 = (mVT‘𝑇)
2 eqid 2739 . . 3 (mType‘𝑇) = (mType‘𝑇)
31, 2mvtval 33337 . 2 𝐹 = ran (mType‘𝑇)
4 eqid 2739 . . . 4 (mVR‘𝑇) = (mVR‘𝑇)
5 mvtss.k . . . 4 𝐾 = (mTC‘𝑇)
64, 5, 2mtyf2 33388 . . 3 (𝑇 ∈ mFS → (mType‘𝑇):(mVR‘𝑇)⟶𝐾)
76frnd 6589 . 2 (𝑇 ∈ mFS → ran (mType‘𝑇) ⊆ 𝐾)
83, 7eqsstrid 3966 1 (𝑇 ∈ mFS → 𝐹𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  wss 3884  ran crn 5580  cfv 6415  mVRcmvar 33298  mTypecmty 33299  mVTcmvt 33300  mTCcmtc 33301  mFScmfs 33313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-fv 6423  df-mvt 33322  df-mfs 33333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator