Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtss Structured version   Visualization version   GIF version

Theorem mvtss 35558
Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtss.f 𝐹 = (mVT‘𝑇)
mvtss.k 𝐾 = (mTC‘𝑇)
Assertion
Ref Expression
mvtss (𝑇 ∈ mFS → 𝐹𝐾)

Proof of Theorem mvtss
StepHypRef Expression
1 mvtss.f . . 3 𝐹 = (mVT‘𝑇)
2 eqid 2737 . . 3 (mType‘𝑇) = (mType‘𝑇)
31, 2mvtval 35505 . 2 𝐹 = ran (mType‘𝑇)
4 eqid 2737 . . . 4 (mVR‘𝑇) = (mVR‘𝑇)
5 mvtss.k . . . 4 𝐾 = (mTC‘𝑇)
64, 5, 2mtyf2 35556 . . 3 (𝑇 ∈ mFS → (mType‘𝑇):(mVR‘𝑇)⟶𝐾)
76frnd 6744 . 2 (𝑇 ∈ mFS → ran (mType‘𝑇) ⊆ 𝐾)
83, 7eqsstrid 4022 1 (𝑇 ∈ mFS → 𝐹𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3951  ran crn 5686  cfv 6561  mVRcmvar 35466  mTypecmty 35467  mVTcmvt 35468  mTCcmtc 35469  mFScmfs 35481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-mvt 35490  df-mfs 35501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator