Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt16 Structured version   Visualization version   GIF version

Theorem metakunt16 42177
Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt16.1 (𝜑𝑀 ∈ ℕ)
metakunt16.2 (𝜑𝐼 ∈ ℕ)
metakunt16.3 (𝜑𝐼𝑀)
metakunt16.4 𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
Assertion
Ref Expression
metakunt16 (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem metakunt16
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt16.4 . 2 𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
2 metakunt16.2 . . . . 5 (𝜑𝐼 ∈ ℕ)
32nnzd 12666 . . . 4 (𝜑𝐼 ∈ ℤ)
43adantr 480 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℤ)
5 metakunt16.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
65nnzd 12666 . . . . 5 (𝜑𝑀 ∈ ℤ)
76adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑀 ∈ ℤ)
8 1zzd 12674 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℤ)
97, 8zsubcld 12752 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑀 − 1) ∈ ℤ)
108, 4zsubcld 12752 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ℤ)
11 simpr 484 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑥 ∈ (𝐼...(𝑀 − 1)))
12 elfz3 13594 . . . 4 ((1 − 𝐼) ∈ ℤ → (1 − 𝐼) ∈ ((1 − 𝐼)...(1 − 𝐼)))
1310, 12syl 17 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ((1 − 𝐼)...(1 − 𝐼)))
144zcnd 12748 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℂ)
15 1cnd 11285 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℂ)
1614, 15pncan3d 11650 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝐼 + (1 − 𝐼)) = 1)
1716eqcomd 2746 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 = (𝐼 + (1 − 𝐼)))
185nncnd 12309 . . . . . 6 (𝜑𝑀 ∈ ℂ)
1918adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑀 ∈ ℂ)
2019, 15, 14npncand 11671 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → ((𝑀 − 1) + (1 − 𝐼)) = (𝑀𝐼))
2120eqcomd 2746 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑀𝐼) = ((𝑀 − 1) + (1 − 𝐼)))
224, 9, 10, 10, 11, 13, 17, 21fzadd2d 41934 . 2 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑥 + (1 − 𝐼)) ∈ (1...(𝑀𝐼)))
233adantr 480 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℤ)
246adantr 480 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑀 ∈ ℤ)
25 1zzd 12674 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℤ)
2624, 25zsubcld 12752 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑀 − 1) ∈ ℤ)
27 elfznn 13613 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 𝑦 ∈ ℕ)
2827adantl 481 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℕ)
29 nnz 12660 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
3028, 29syl 17 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℤ)
3125, 23zsubcld 12752 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℤ)
3230, 31zsubcld 12752 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ∈ ℤ)
3323zred 12747 . . . . . . 7 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℝ)
3433recnd 11318 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℂ)
35 1cnd 11285 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℂ)
3634, 35pncan3d 11650 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 + (1 − 𝐼)) = 1)
3727nnge1d 12341 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 1 ≤ 𝑦)
3837adantl 481 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ≤ 𝑦)
3936, 38eqbrtrd 5188 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 + (1 − 𝐼)) ≤ 𝑦)
40 1red 11291 . . . . . . 7 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℝ)
4140, 33resubcld 11718 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℝ)
4228nnred 12308 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℝ)
4333, 41, 423jca 1128 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 ∈ ℝ ∧ (1 − 𝐼) ∈ ℝ ∧ 𝑦 ∈ ℝ))
44 leaddsub 11766 . . . . 5 ((𝐼 ∈ ℝ ∧ (1 − 𝐼) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐼 + (1 − 𝐼)) ≤ 𝑦𝐼 ≤ (𝑦 − (1 − 𝐼))))
4543, 44syl 17 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝐼 + (1 − 𝐼)) ≤ 𝑦𝐼 ≤ (𝑦 − (1 − 𝐼))))
4639, 45mpbid 232 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ≤ (𝑦 − (1 − 𝐼)))
47 elfzle2 13588 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 𝑦 ≤ (𝑀𝐼))
4847adantl 481 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ≤ (𝑀𝐼))
4918adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑀 ∈ ℂ)
5023zcnd 12748 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℂ)
5149, 35, 50npncand 11671 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝑀 − 1) + (1 − 𝐼)) = (𝑀𝐼))
5248, 51breqtrrd 5194 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ≤ ((𝑀 − 1) + (1 − 𝐼)))
5331zred 12747 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℝ)
5426zred 12747 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑀 − 1) ∈ ℝ)
5542, 53, 54lesubaddd 11887 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝑦 − (1 − 𝐼)) ≤ (𝑀 − 1) ↔ 𝑦 ≤ ((𝑀 − 1) + (1 − 𝐼))))
5652, 55mpbird 257 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ≤ (𝑀 − 1))
5723, 26, 32, 46, 56elfzd 13575 . 2 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ∈ (𝐼...(𝑀 − 1)))
58 1cnd 11285 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 1 ∈ ℂ)
5934adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝐼 ∈ ℂ)
6058, 59subcld 11647 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (1 − 𝐼) ∈ ℂ)
61 elfzelz 13584 . . . . . . 7 (𝑥 ∈ (𝐼...(𝑀 − 1)) → 𝑥 ∈ ℤ)
6261ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑥 ∈ ℤ)
63 zcn 12644 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6462, 63syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑥 ∈ ℂ)
6528adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑦 ∈ ℕ)
66 nncn 12301 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6765, 66syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑦 ∈ ℂ)
6860, 64, 67addrsub 11707 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦𝑥 = (𝑦 − (1 − 𝐼))))
6968bicomd 223 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (𝑥 = (𝑦 − (1 − 𝐼)) ↔ ((1 − 𝐼) + 𝑥) = 𝑦))
7060, 64addcomd 11492 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → ((1 − 𝐼) + 𝑥) = (𝑥 + (1 − 𝐼)))
7170eqeq1d 2742 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦 ↔ (𝑥 + (1 − 𝐼)) = 𝑦))
72 eqcom 2747 . . . . 5 ((𝑥 + (1 − 𝐼)) = 𝑦𝑦 = (𝑥 + (1 − 𝐼)))
7372a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → ((𝑥 + (1 − 𝐼)) = 𝑦𝑦 = (𝑥 + (1 − 𝐼))))
7471, 73bitrd 279 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦𝑦 = (𝑥 + (1 − 𝐼))))
7569, 74bitrd 279 . 2 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (𝑥 = (𝑦 − (1 − 𝐼)) ↔ 𝑦 = (𝑥 + (1 − 𝐼))))
761, 22, 57, 75f1o2d 7704 1 (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cmpt 5249  1-1-ontowf1o 6572  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187  cle 11325  cmin 11520  cn 12293  cz 12639  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  metakunt25  42186
  Copyright terms: Public domain W3C validator