Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt16 Structured version   Visualization version   GIF version

Theorem metakunt16 40638
Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt16.1 (𝜑𝑀 ∈ ℕ)
metakunt16.2 (𝜑𝐼 ∈ ℕ)
metakunt16.3 (𝜑𝐼𝑀)
metakunt16.4 𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
Assertion
Ref Expression
metakunt16 (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem metakunt16
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt16.4 . 2 𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
2 metakunt16.2 . . . . 5 (𝜑𝐼 ∈ ℕ)
32nnzd 12531 . . . 4 (𝜑𝐼 ∈ ℤ)
43adantr 482 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℤ)
5 metakunt16.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
65nnzd 12531 . . . . 5 (𝜑𝑀 ∈ ℤ)
76adantr 482 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑀 ∈ ℤ)
8 1zzd 12539 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℤ)
97, 8zsubcld 12617 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑀 − 1) ∈ ℤ)
108, 4zsubcld 12617 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ℤ)
11 simpr 486 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑥 ∈ (𝐼...(𝑀 − 1)))
12 elfz3 13457 . . . 4 ((1 − 𝐼) ∈ ℤ → (1 − 𝐼) ∈ ((1 − 𝐼)...(1 − 𝐼)))
1310, 12syl 17 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ((1 − 𝐼)...(1 − 𝐼)))
144zcnd 12613 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℂ)
15 1cnd 11155 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℂ)
1614, 15pncan3d 11520 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝐼 + (1 − 𝐼)) = 1)
1716eqcomd 2739 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 = (𝐼 + (1 − 𝐼)))
185nncnd 12174 . . . . . 6 (𝜑𝑀 ∈ ℂ)
1918adantr 482 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑀 ∈ ℂ)
2019, 15, 14npncand 11541 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → ((𝑀 − 1) + (1 − 𝐼)) = (𝑀𝐼))
2120eqcomd 2739 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑀𝐼) = ((𝑀 − 1) + (1 − 𝐼)))
224, 9, 10, 10, 11, 13, 17, 21fzadd2d 40481 . 2 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑥 + (1 − 𝐼)) ∈ (1...(𝑀𝐼)))
233adantr 482 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℤ)
246adantr 482 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑀 ∈ ℤ)
25 1zzd 12539 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℤ)
2624, 25zsubcld 12617 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑀 − 1) ∈ ℤ)
27 elfznn 13476 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 𝑦 ∈ ℕ)
2827adantl 483 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℕ)
29 nnz 12525 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
3028, 29syl 17 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℤ)
3125, 23zsubcld 12617 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℤ)
3230, 31zsubcld 12617 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ∈ ℤ)
3323zred 12612 . . . . . . 7 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℝ)
3433recnd 11188 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℂ)
35 1cnd 11155 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℂ)
3634, 35pncan3d 11520 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 + (1 − 𝐼)) = 1)
3727nnge1d 12206 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 1 ≤ 𝑦)
3837adantl 483 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ≤ 𝑦)
3936, 38eqbrtrd 5128 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 + (1 − 𝐼)) ≤ 𝑦)
40 1red 11161 . . . . . . 7 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℝ)
4140, 33resubcld 11588 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℝ)
4228nnred 12173 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℝ)
4333, 41, 423jca 1129 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 ∈ ℝ ∧ (1 − 𝐼) ∈ ℝ ∧ 𝑦 ∈ ℝ))
44 leaddsub 11636 . . . . 5 ((𝐼 ∈ ℝ ∧ (1 − 𝐼) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐼 + (1 − 𝐼)) ≤ 𝑦𝐼 ≤ (𝑦 − (1 − 𝐼))))
4543, 44syl 17 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝐼 + (1 − 𝐼)) ≤ 𝑦𝐼 ≤ (𝑦 − (1 − 𝐼))))
4639, 45mpbid 231 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ≤ (𝑦 − (1 − 𝐼)))
47 elfzle2 13451 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 𝑦 ≤ (𝑀𝐼))
4847adantl 483 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ≤ (𝑀𝐼))
4918adantr 482 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑀 ∈ ℂ)
5023zcnd 12613 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℂ)
5149, 35, 50npncand 11541 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝑀 − 1) + (1 − 𝐼)) = (𝑀𝐼))
5248, 51breqtrrd 5134 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ≤ ((𝑀 − 1) + (1 − 𝐼)))
5331zred 12612 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℝ)
5426zred 12612 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑀 − 1) ∈ ℝ)
5542, 53, 54lesubaddd 11757 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝑦 − (1 − 𝐼)) ≤ (𝑀 − 1) ↔ 𝑦 ≤ ((𝑀 − 1) + (1 − 𝐼))))
5652, 55mpbird 257 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ≤ (𝑀 − 1))
5723, 26, 32, 46, 56elfzd 13438 . 2 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ∈ (𝐼...(𝑀 − 1)))
58 1cnd 11155 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 1 ∈ ℂ)
5934adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝐼 ∈ ℂ)
6058, 59subcld 11517 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (1 − 𝐼) ∈ ℂ)
61 elfzelz 13447 . . . . . . 7 (𝑥 ∈ (𝐼...(𝑀 − 1)) → 𝑥 ∈ ℤ)
6261ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑥 ∈ ℤ)
63 zcn 12509 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6462, 63syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑥 ∈ ℂ)
6528adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑦 ∈ ℕ)
66 nncn 12166 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6765, 66syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑦 ∈ ℂ)
6860, 64, 67addrsub 11577 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦𝑥 = (𝑦 − (1 − 𝐼))))
6968bicomd 222 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (𝑥 = (𝑦 − (1 − 𝐼)) ↔ ((1 − 𝐼) + 𝑥) = 𝑦))
7060, 64addcomd 11362 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → ((1 − 𝐼) + 𝑥) = (𝑥 + (1 − 𝐼)))
7170eqeq1d 2735 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦 ↔ (𝑥 + (1 − 𝐼)) = 𝑦))
72 eqcom 2740 . . . . 5 ((𝑥 + (1 − 𝐼)) = 𝑦𝑦 = (𝑥 + (1 − 𝐼)))
7372a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → ((𝑥 + (1 − 𝐼)) = 𝑦𝑦 = (𝑥 + (1 − 𝐼))))
7471, 73bitrd 279 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦𝑦 = (𝑥 + (1 − 𝐼))))
7569, 74bitrd 279 . 2 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (𝑥 = (𝑦 − (1 − 𝐼)) ↔ 𝑦 = (𝑥 + (1 − 𝐼))))
761, 22, 57, 75f1o2d 7608 1 (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5106  cmpt 5189  1-1-ontowf1o 6496  (class class class)co 7358  cc 11054  cr 11055  1c1 11057   + caddc 11059  cle 11195  cmin 11390  cn 12158  cz 12504  ...cfz 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431
This theorem is referenced by:  metakunt25  40647
  Copyright terms: Public domain W3C validator