Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt16 Structured version   Visualization version   GIF version

Theorem metakunt16 42201
Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt16.1 (𝜑𝑀 ∈ ℕ)
metakunt16.2 (𝜑𝐼 ∈ ℕ)
metakunt16.3 (𝜑𝐼𝑀)
metakunt16.4 𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
Assertion
Ref Expression
metakunt16 (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem metakunt16
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt16.4 . 2 𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
2 metakunt16.2 . . . . 5 (𝜑𝐼 ∈ ℕ)
32nnzd 12637 . . . 4 (𝜑𝐼 ∈ ℤ)
43adantr 480 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℤ)
5 metakunt16.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
65nnzd 12637 . . . . 5 (𝜑𝑀 ∈ ℤ)
76adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑀 ∈ ℤ)
8 1zzd 12645 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℤ)
97, 8zsubcld 12724 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑀 − 1) ∈ ℤ)
108, 4zsubcld 12724 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ℤ)
11 simpr 484 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑥 ∈ (𝐼...(𝑀 − 1)))
12 elfz3 13570 . . . 4 ((1 − 𝐼) ∈ ℤ → (1 − 𝐼) ∈ ((1 − 𝐼)...(1 − 𝐼)))
1310, 12syl 17 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ((1 − 𝐼)...(1 − 𝐼)))
144zcnd 12720 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℂ)
15 1cnd 11253 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℂ)
1614, 15pncan3d 11620 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝐼 + (1 − 𝐼)) = 1)
1716eqcomd 2740 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 = (𝐼 + (1 − 𝐼)))
185nncnd 12279 . . . . . 6 (𝜑𝑀 ∈ ℂ)
1918adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑀 ∈ ℂ)
2019, 15, 14npncand 11641 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → ((𝑀 − 1) + (1 − 𝐼)) = (𝑀𝐼))
2120eqcomd 2740 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑀𝐼) = ((𝑀 − 1) + (1 − 𝐼)))
224, 9, 10, 10, 11, 13, 17, 21fzadd2d 41959 . 2 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑥 + (1 − 𝐼)) ∈ (1...(𝑀𝐼)))
233adantr 480 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℤ)
246adantr 480 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑀 ∈ ℤ)
25 1zzd 12645 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℤ)
2624, 25zsubcld 12724 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑀 − 1) ∈ ℤ)
27 elfznn 13589 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 𝑦 ∈ ℕ)
2827adantl 481 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℕ)
29 nnz 12631 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
3028, 29syl 17 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℤ)
3125, 23zsubcld 12724 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℤ)
3230, 31zsubcld 12724 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ∈ ℤ)
3323zred 12719 . . . . . . 7 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℝ)
3433recnd 11286 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℂ)
35 1cnd 11253 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℂ)
3634, 35pncan3d 11620 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 + (1 − 𝐼)) = 1)
3727nnge1d 12311 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 1 ≤ 𝑦)
3837adantl 481 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ≤ 𝑦)
3936, 38eqbrtrd 5169 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 + (1 − 𝐼)) ≤ 𝑦)
40 1red 11259 . . . . . . 7 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℝ)
4140, 33resubcld 11688 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℝ)
4228nnred 12278 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℝ)
4333, 41, 423jca 1127 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 ∈ ℝ ∧ (1 − 𝐼) ∈ ℝ ∧ 𝑦 ∈ ℝ))
44 leaddsub 11736 . . . . 5 ((𝐼 ∈ ℝ ∧ (1 − 𝐼) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐼 + (1 − 𝐼)) ≤ 𝑦𝐼 ≤ (𝑦 − (1 − 𝐼))))
4543, 44syl 17 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝐼 + (1 − 𝐼)) ≤ 𝑦𝐼 ≤ (𝑦 − (1 − 𝐼))))
4639, 45mpbid 232 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ≤ (𝑦 − (1 − 𝐼)))
47 elfzle2 13564 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 𝑦 ≤ (𝑀𝐼))
4847adantl 481 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ≤ (𝑀𝐼))
4918adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑀 ∈ ℂ)
5023zcnd 12720 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℂ)
5149, 35, 50npncand 11641 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝑀 − 1) + (1 − 𝐼)) = (𝑀𝐼))
5248, 51breqtrrd 5175 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ≤ ((𝑀 − 1) + (1 − 𝐼)))
5331zred 12719 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℝ)
5426zred 12719 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑀 − 1) ∈ ℝ)
5542, 53, 54lesubaddd 11857 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝑦 − (1 − 𝐼)) ≤ (𝑀 − 1) ↔ 𝑦 ≤ ((𝑀 − 1) + (1 − 𝐼))))
5652, 55mpbird 257 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ≤ (𝑀 − 1))
5723, 26, 32, 46, 56elfzd 13551 . 2 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ∈ (𝐼...(𝑀 − 1)))
58 1cnd 11253 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 1 ∈ ℂ)
5934adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝐼 ∈ ℂ)
6058, 59subcld 11617 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (1 − 𝐼) ∈ ℂ)
61 elfzelz 13560 . . . . . . 7 (𝑥 ∈ (𝐼...(𝑀 − 1)) → 𝑥 ∈ ℤ)
6261ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑥 ∈ ℤ)
63 zcn 12615 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6462, 63syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑥 ∈ ℂ)
6528adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑦 ∈ ℕ)
66 nncn 12271 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6765, 66syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑦 ∈ ℂ)
6860, 64, 67addrsub 11677 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦𝑥 = (𝑦 − (1 − 𝐼))))
6968bicomd 223 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (𝑥 = (𝑦 − (1 − 𝐼)) ↔ ((1 − 𝐼) + 𝑥) = 𝑦))
7060, 64addcomd 11460 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → ((1 − 𝐼) + 𝑥) = (𝑥 + (1 − 𝐼)))
7170eqeq1d 2736 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦 ↔ (𝑥 + (1 − 𝐼)) = 𝑦))
72 eqcom 2741 . . . . 5 ((𝑥 + (1 − 𝐼)) = 𝑦𝑦 = (𝑥 + (1 − 𝐼)))
7372a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → ((𝑥 + (1 − 𝐼)) = 𝑦𝑦 = (𝑥 + (1 − 𝐼))))
7471, 73bitrd 279 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦𝑦 = (𝑥 + (1 − 𝐼))))
7569, 74bitrd 279 . 2 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (𝑥 = (𝑦 − (1 − 𝐼)) ↔ 𝑦 = (𝑥 + (1 − 𝐼))))
761, 22, 57, 75f1o2d 7686 1 (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105   class class class wbr 5147  cmpt 5230  1-1-ontowf1o 6561  (class class class)co 7430  cc 11150  cr 11151  1c1 11153   + caddc 11155  cle 11293  cmin 11489  cn 12263  cz 12610  ...cfz 13543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544
This theorem is referenced by:  metakunt25  42210
  Copyright terms: Public domain W3C validator