Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt16 Structured version   Visualization version   GIF version

Theorem metakunt16 41825
Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt16.1 (𝜑𝑀 ∈ ℕ)
metakunt16.2 (𝜑𝐼 ∈ ℕ)
metakunt16.3 (𝜑𝐼𝑀)
metakunt16.4 𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
Assertion
Ref Expression
metakunt16 (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem metakunt16
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt16.4 . 2 𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
2 metakunt16.2 . . . . 5 (𝜑𝐼 ∈ ℕ)
32nnzd 12623 . . . 4 (𝜑𝐼 ∈ ℤ)
43adantr 479 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℤ)
5 metakunt16.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
65nnzd 12623 . . . . 5 (𝜑𝑀 ∈ ℤ)
76adantr 479 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑀 ∈ ℤ)
8 1zzd 12631 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℤ)
97, 8zsubcld 12709 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑀 − 1) ∈ ℤ)
108, 4zsubcld 12709 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ℤ)
11 simpr 483 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑥 ∈ (𝐼...(𝑀 − 1)))
12 elfz3 13551 . . . 4 ((1 − 𝐼) ∈ ℤ → (1 − 𝐼) ∈ ((1 − 𝐼)...(1 − 𝐼)))
1310, 12syl 17 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ((1 − 𝐼)...(1 − 𝐼)))
144zcnd 12705 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℂ)
15 1cnd 11246 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℂ)
1614, 15pncan3d 11611 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝐼 + (1 − 𝐼)) = 1)
1716eqcomd 2731 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 = (𝐼 + (1 − 𝐼)))
185nncnd 12266 . . . . . 6 (𝜑𝑀 ∈ ℂ)
1918adantr 479 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑀 ∈ ℂ)
2019, 15, 14npncand 11632 . . . 4 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → ((𝑀 − 1) + (1 − 𝐼)) = (𝑀𝐼))
2120eqcomd 2731 . . 3 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑀𝐼) = ((𝑀 − 1) + (1 − 𝐼)))
224, 9, 10, 10, 11, 13, 17, 21fzadd2d 41600 . 2 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑥 + (1 − 𝐼)) ∈ (1...(𝑀𝐼)))
233adantr 479 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℤ)
246adantr 479 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑀 ∈ ℤ)
25 1zzd 12631 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℤ)
2624, 25zsubcld 12709 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑀 − 1) ∈ ℤ)
27 elfznn 13570 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 𝑦 ∈ ℕ)
2827adantl 480 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℕ)
29 nnz 12617 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
3028, 29syl 17 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℤ)
3125, 23zsubcld 12709 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℤ)
3230, 31zsubcld 12709 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ∈ ℤ)
3323zred 12704 . . . . . . 7 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℝ)
3433recnd 11279 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℂ)
35 1cnd 11246 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℂ)
3634, 35pncan3d 11611 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 + (1 − 𝐼)) = 1)
3727nnge1d 12298 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 1 ≤ 𝑦)
3837adantl 480 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ≤ 𝑦)
3936, 38eqbrtrd 5171 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 + (1 − 𝐼)) ≤ 𝑦)
40 1red 11252 . . . . . . 7 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 1 ∈ ℝ)
4140, 33resubcld 11679 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℝ)
4228nnred 12265 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ∈ ℝ)
4333, 41, 423jca 1125 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝐼 ∈ ℝ ∧ (1 − 𝐼) ∈ ℝ ∧ 𝑦 ∈ ℝ))
44 leaddsub 11727 . . . . 5 ((𝐼 ∈ ℝ ∧ (1 − 𝐼) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐼 + (1 − 𝐼)) ≤ 𝑦𝐼 ≤ (𝑦 − (1 − 𝐼))))
4543, 44syl 17 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝐼 + (1 − 𝐼)) ≤ 𝑦𝐼 ≤ (𝑦 − (1 − 𝐼))))
4639, 45mpbid 231 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ≤ (𝑦 − (1 − 𝐼)))
47 elfzle2 13545 . . . . . 6 (𝑦 ∈ (1...(𝑀𝐼)) → 𝑦 ≤ (𝑀𝐼))
4847adantl 480 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ≤ (𝑀𝐼))
4918adantr 479 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑀 ∈ ℂ)
5023zcnd 12705 . . . . . 6 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝐼 ∈ ℂ)
5149, 35, 50npncand 11632 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝑀 − 1) + (1 − 𝐼)) = (𝑀𝐼))
5248, 51breqtrrd 5177 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → 𝑦 ≤ ((𝑀 − 1) + (1 − 𝐼)))
5331zred 12704 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (1 − 𝐼) ∈ ℝ)
5426zred 12704 . . . . 5 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑀 − 1) ∈ ℝ)
5542, 53, 54lesubaddd 11848 . . . 4 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → ((𝑦 − (1 − 𝐼)) ≤ (𝑀 − 1) ↔ 𝑦 ≤ ((𝑀 − 1) + (1 − 𝐼))))
5652, 55mpbird 256 . . 3 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ≤ (𝑀 − 1))
5723, 26, 32, 46, 56elfzd 13532 . 2 ((𝜑𝑦 ∈ (1...(𝑀𝐼))) → (𝑦 − (1 − 𝐼)) ∈ (𝐼...(𝑀 − 1)))
58 1cnd 11246 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 1 ∈ ℂ)
5934adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝐼 ∈ ℂ)
6058, 59subcld 11608 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (1 − 𝐼) ∈ ℂ)
61 elfzelz 13541 . . . . . . 7 (𝑥 ∈ (𝐼...(𝑀 − 1)) → 𝑥 ∈ ℤ)
6261ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑥 ∈ ℤ)
63 zcn 12601 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6462, 63syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑥 ∈ ℂ)
6528adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑦 ∈ ℕ)
66 nncn 12258 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6765, 66syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → 𝑦 ∈ ℂ)
6860, 64, 67addrsub 11668 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦𝑥 = (𝑦 − (1 − 𝐼))))
6968bicomd 222 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (𝑥 = (𝑦 − (1 − 𝐼)) ↔ ((1 − 𝐼) + 𝑥) = 𝑦))
7060, 64addcomd 11453 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → ((1 − 𝐼) + 𝑥) = (𝑥 + (1 − 𝐼)))
7170eqeq1d 2727 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦 ↔ (𝑥 + (1 − 𝐼)) = 𝑦))
72 eqcom 2732 . . . . 5 ((𝑥 + (1 − 𝐼)) = 𝑦𝑦 = (𝑥 + (1 − 𝐼)))
7372a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → ((𝑥 + (1 − 𝐼)) = 𝑦𝑦 = (𝑥 + (1 − 𝐼))))
7471, 73bitrd 278 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (((1 − 𝐼) + 𝑥) = 𝑦𝑦 = (𝑥 + (1 − 𝐼))))
7569, 74bitrd 278 . 2 ((𝜑 ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ∧ 𝑦 ∈ (1...(𝑀𝐼)))) → (𝑥 = (𝑦 − (1 − 𝐼)) ↔ 𝑦 = (𝑥 + (1 − 𝐼))))
761, 22, 57, 75f1o2d 7675 1 (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5149  cmpt 5232  1-1-ontowf1o 6548  (class class class)co 7419  cc 11143  cr 11144  1c1 11146   + caddc 11148  cle 11286  cmin 11481  cn 12250  cz 12596  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525
This theorem is referenced by:  metakunt25  41834
  Copyright terms: Public domain W3C validator