Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt18 Structured version   Visualization version   GIF version

Theorem metakunt18 42223
Description: Disjoint domains and codomains. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt18.1 (𝜑𝑀 ∈ ℕ)
metakunt18.2 (𝜑𝐼 ∈ ℕ)
metakunt18.3 (𝜑𝐼𝑀)
Assertion
Ref Expression
metakunt18 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))

Proof of Theorem metakunt18
StepHypRef Expression
1 metakunt18.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
21nnred 12281 . . . . 5 (𝜑𝐼 ∈ ℝ)
32ltm1d 12200 . . . 4 (𝜑 → (𝐼 − 1) < 𝐼)
4 fzdisj 13591 . . . 4 ((𝐼 − 1) < 𝐼 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
53, 4syl 17 . . 3 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
6 metakunt18.1 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
76nnzd 12640 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
8 fzsn 13606 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
97, 8syl 17 . . . . . 6 (𝜑 → (𝑀...𝑀) = {𝑀})
109eqcomd 2743 . . . . 5 (𝜑 → {𝑀} = (𝑀...𝑀))
1110ineq2d 4220 . . . 4 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ((1...(𝐼 − 1)) ∩ (𝑀...𝑀)))
12 metakunt18.3 . . . . . 6 (𝜑𝐼𝑀)
131nnzd 12640 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
14 zlem1lt 12669 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼𝑀 ↔ (𝐼 − 1) < 𝑀))
1513, 7, 14syl2anc 584 . . . . . 6 (𝜑 → (𝐼𝑀 ↔ (𝐼 − 1) < 𝑀))
1612, 15mpbid 232 . . . . 5 (𝜑 → (𝐼 − 1) < 𝑀)
17 fzdisj 13591 . . . . 5 ((𝐼 − 1) < 𝑀 → ((1...(𝐼 − 1)) ∩ (𝑀...𝑀)) = ∅)
1816, 17syl 17 . . . 4 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝑀...𝑀)) = ∅)
1911, 18eqtrd 2777 . . 3 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
2010ineq2d 4220 . . . 4 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ((𝐼...(𝑀 − 1)) ∩ (𝑀...𝑀)))
216nnred 12281 . . . . . 6 (𝜑𝑀 ∈ ℝ)
2221ltm1d 12200 . . . . 5 (𝜑 → (𝑀 − 1) < 𝑀)
23 fzdisj 13591 . . . . 5 ((𝑀 − 1) < 𝑀 → ((𝐼...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
2422, 23syl 17 . . . 4 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
2520, 24eqtrd 2777 . . 3 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
265, 19, 253jca 1129 . 2 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
27 incom 4209 . . . . 5 ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1)))
2827a1i 11 . . . 4 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1))))
2921, 2resubcld 11691 . . . . . 6 (𝜑 → (𝑀𝐼) ∈ ℝ)
3029ltp1d 12198 . . . . 5 (𝜑 → (𝑀𝐼) < ((𝑀𝐼) + 1))
31 fzdisj 13591 . . . . 5 ((𝑀𝐼) < ((𝑀𝐼) + 1) → ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1))) = ∅)
3230, 31syl 17 . . . 4 (𝜑 → ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1))) = ∅)
3328, 32eqtrd 2777 . . 3 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅)
3410ineq2d 4220 . . . 4 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (𝑀...𝑀)))
35 fzdisj 13591 . . . . 5 ((𝑀 − 1) < 𝑀 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
3622, 35syl 17 . . . 4 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
3734, 36eqtrd 2777 . . 3 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅)
3810ineq2d 4220 . . . 4 (𝜑 → ((1...(𝑀𝐼)) ∩ {𝑀}) = ((1...(𝑀𝐼)) ∩ (𝑀...𝑀)))
391nnrpd 13075 . . . . . 6 (𝜑𝐼 ∈ ℝ+)
4021, 39ltsubrpd 13109 . . . . 5 (𝜑 → (𝑀𝐼) < 𝑀)
41 fzdisj 13591 . . . . 5 ((𝑀𝐼) < 𝑀 → ((1...(𝑀𝐼)) ∩ (𝑀...𝑀)) = ∅)
4240, 41syl 17 . . . 4 (𝜑 → ((1...(𝑀𝐼)) ∩ (𝑀...𝑀)) = ∅)
4338, 42eqtrd 2777 . . 3 (𝜑 → ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)
4433, 37, 433jca 1129 . 2 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅))
4526, 44jca 511 1 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cin 3950  c0 4333  {csn 4626   class class class wbr 5143  (class class class)co 7431  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cn 12266  cz 12613  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548
This theorem is referenced by:  metakunt19  42224  metakunt21  42226  metakunt22  42227  metakunt24  42229  metakunt25  42230
  Copyright terms: Public domain W3C validator