Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt18 Structured version   Visualization version   GIF version

Theorem metakunt18 40448
Description: Disjoint domains and codomains. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt18.1 (𝜑𝑀 ∈ ℕ)
metakunt18.2 (𝜑𝐼 ∈ ℕ)
metakunt18.3 (𝜑𝐼𝑀)
Assertion
Ref Expression
metakunt18 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))

Proof of Theorem metakunt18
StepHypRef Expression
1 metakunt18.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
21nnred 12094 . . . . 5 (𝜑𝐼 ∈ ℝ)
32ltm1d 12013 . . . 4 (𝜑 → (𝐼 − 1) < 𝐼)
4 fzdisj 13389 . . . 4 ((𝐼 − 1) < 𝐼 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
53, 4syl 17 . . 3 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
6 metakunt18.1 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
76nnzd 12531 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
8 fzsn 13404 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
97, 8syl 17 . . . . . 6 (𝜑 → (𝑀...𝑀) = {𝑀})
109eqcomd 2743 . . . . 5 (𝜑 → {𝑀} = (𝑀...𝑀))
1110ineq2d 4164 . . . 4 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ((1...(𝐼 − 1)) ∩ (𝑀...𝑀)))
12 metakunt18.3 . . . . . 6 (𝜑𝐼𝑀)
131nnzd 12531 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
14 zlem1lt 12478 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼𝑀 ↔ (𝐼 − 1) < 𝑀))
1513, 7, 14syl2anc 585 . . . . . 6 (𝜑 → (𝐼𝑀 ↔ (𝐼 − 1) < 𝑀))
1612, 15mpbid 231 . . . . 5 (𝜑 → (𝐼 − 1) < 𝑀)
17 fzdisj 13389 . . . . 5 ((𝐼 − 1) < 𝑀 → ((1...(𝐼 − 1)) ∩ (𝑀...𝑀)) = ∅)
1816, 17syl 17 . . . 4 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝑀...𝑀)) = ∅)
1911, 18eqtrd 2777 . . 3 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
2010ineq2d 4164 . . . 4 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ((𝐼...(𝑀 − 1)) ∩ (𝑀...𝑀)))
216nnred 12094 . . . . . 6 (𝜑𝑀 ∈ ℝ)
2221ltm1d 12013 . . . . 5 (𝜑 → (𝑀 − 1) < 𝑀)
23 fzdisj 13389 . . . . 5 ((𝑀 − 1) < 𝑀 → ((𝐼...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
2422, 23syl 17 . . . 4 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
2520, 24eqtrd 2777 . . 3 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
265, 19, 253jca 1128 . 2 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
27 incom 4153 . . . . 5 ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1)))
2827a1i 11 . . . 4 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1))))
2921, 2resubcld 11509 . . . . . 6 (𝜑 → (𝑀𝐼) ∈ ℝ)
3029ltp1d 12011 . . . . 5 (𝜑 → (𝑀𝐼) < ((𝑀𝐼) + 1))
31 fzdisj 13389 . . . . 5 ((𝑀𝐼) < ((𝑀𝐼) + 1) → ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1))) = ∅)
3230, 31syl 17 . . . 4 (𝜑 → ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1))) = ∅)
3328, 32eqtrd 2777 . . 3 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅)
3410ineq2d 4164 . . . 4 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (𝑀...𝑀)))
35 fzdisj 13389 . . . . 5 ((𝑀 − 1) < 𝑀 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
3622, 35syl 17 . . . 4 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
3734, 36eqtrd 2777 . . 3 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅)
3810ineq2d 4164 . . . 4 (𝜑 → ((1...(𝑀𝐼)) ∩ {𝑀}) = ((1...(𝑀𝐼)) ∩ (𝑀...𝑀)))
391nnrpd 12876 . . . . . 6 (𝜑𝐼 ∈ ℝ+)
4021, 39ltsubrpd 12910 . . . . 5 (𝜑 → (𝑀𝐼) < 𝑀)
41 fzdisj 13389 . . . . 5 ((𝑀𝐼) < 𝑀 → ((1...(𝑀𝐼)) ∩ (𝑀...𝑀)) = ∅)
4240, 41syl 17 . . . 4 (𝜑 → ((1...(𝑀𝐼)) ∩ (𝑀...𝑀)) = ∅)
4338, 42eqtrd 2777 . . 3 (𝜑 → ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)
4433, 37, 433jca 1128 . 2 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅))
4526, 44jca 513 1 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  cin 3901  c0 4274  {csn 4578   class class class wbr 5097  (class class class)co 7342  1c1 10978   + caddc 10980   < clt 11115  cle 11116  cmin 11311  cn 12079  cz 12425  ...cfz 13345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-fz 13346
This theorem is referenced by:  metakunt19  40449  metakunt21  40451  metakunt22  40452  metakunt24  40454  metakunt25  40455
  Copyright terms: Public domain W3C validator