Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt18 Structured version   Visualization version   GIF version

Theorem metakunt18 42204
Description: Disjoint domains and codomains. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt18.1 (𝜑𝑀 ∈ ℕ)
metakunt18.2 (𝜑𝐼 ∈ ℕ)
metakunt18.3 (𝜑𝐼𝑀)
Assertion
Ref Expression
metakunt18 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))

Proof of Theorem metakunt18
StepHypRef Expression
1 metakunt18.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
21nnred 12279 . . . . 5 (𝜑𝐼 ∈ ℝ)
32ltm1d 12198 . . . 4 (𝜑 → (𝐼 − 1) < 𝐼)
4 fzdisj 13588 . . . 4 ((𝐼 − 1) < 𝐼 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
53, 4syl 17 . . 3 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
6 metakunt18.1 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
76nnzd 12638 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
8 fzsn 13603 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
97, 8syl 17 . . . . . 6 (𝜑 → (𝑀...𝑀) = {𝑀})
109eqcomd 2741 . . . . 5 (𝜑 → {𝑀} = (𝑀...𝑀))
1110ineq2d 4228 . . . 4 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ((1...(𝐼 − 1)) ∩ (𝑀...𝑀)))
12 metakunt18.3 . . . . . 6 (𝜑𝐼𝑀)
131nnzd 12638 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
14 zlem1lt 12667 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼𝑀 ↔ (𝐼 − 1) < 𝑀))
1513, 7, 14syl2anc 584 . . . . . 6 (𝜑 → (𝐼𝑀 ↔ (𝐼 − 1) < 𝑀))
1612, 15mpbid 232 . . . . 5 (𝜑 → (𝐼 − 1) < 𝑀)
17 fzdisj 13588 . . . . 5 ((𝐼 − 1) < 𝑀 → ((1...(𝐼 − 1)) ∩ (𝑀...𝑀)) = ∅)
1816, 17syl 17 . . . 4 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝑀...𝑀)) = ∅)
1911, 18eqtrd 2775 . . 3 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
2010ineq2d 4228 . . . 4 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ((𝐼...(𝑀 − 1)) ∩ (𝑀...𝑀)))
216nnred 12279 . . . . . 6 (𝜑𝑀 ∈ ℝ)
2221ltm1d 12198 . . . . 5 (𝜑 → (𝑀 − 1) < 𝑀)
23 fzdisj 13588 . . . . 5 ((𝑀 − 1) < 𝑀 → ((𝐼...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
2422, 23syl 17 . . . 4 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
2520, 24eqtrd 2775 . . 3 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
265, 19, 253jca 1127 . 2 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
27 incom 4217 . . . . 5 ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1)))
2827a1i 11 . . . 4 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1))))
2921, 2resubcld 11689 . . . . . 6 (𝜑 → (𝑀𝐼) ∈ ℝ)
3029ltp1d 12196 . . . . 5 (𝜑 → (𝑀𝐼) < ((𝑀𝐼) + 1))
31 fzdisj 13588 . . . . 5 ((𝑀𝐼) < ((𝑀𝐼) + 1) → ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1))) = ∅)
3230, 31syl 17 . . . 4 (𝜑 → ((1...(𝑀𝐼)) ∩ (((𝑀𝐼) + 1)...(𝑀 − 1))) = ∅)
3328, 32eqtrd 2775 . . 3 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅)
3410ineq2d 4228 . . . 4 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (𝑀...𝑀)))
35 fzdisj 13588 . . . . 5 ((𝑀 − 1) < 𝑀 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
3622, 35syl 17 . . . 4 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (𝑀...𝑀)) = ∅)
3734, 36eqtrd 2775 . . 3 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅)
3810ineq2d 4228 . . . 4 (𝜑 → ((1...(𝑀𝐼)) ∩ {𝑀}) = ((1...(𝑀𝐼)) ∩ (𝑀...𝑀)))
391nnrpd 13073 . . . . . 6 (𝜑𝐼 ∈ ℝ+)
4021, 39ltsubrpd 13107 . . . . 5 (𝜑 → (𝑀𝐼) < 𝑀)
41 fzdisj 13588 . . . . 5 ((𝑀𝐼) < 𝑀 → ((1...(𝑀𝐼)) ∩ (𝑀...𝑀)) = ∅)
4240, 41syl 17 . . . 4 (𝜑 → ((1...(𝑀𝐼)) ∩ (𝑀...𝑀)) = ∅)
4338, 42eqtrd 2775 . . 3 (𝜑 → ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)
4433, 37, 433jca 1127 . 2 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅))
4526, 44jca 511 1 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  cin 3962  c0 4339  {csn 4631   class class class wbr 5148  (class class class)co 7431  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  cz 12611  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545
This theorem is referenced by:  metakunt19  42205  metakunt21  42207  metakunt22  42208  metakunt24  42210  metakunt25  42211
  Copyright terms: Public domain W3C validator