![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eqeq2d 2751 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
4 | eqeq1 2744 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
5 | moeq 3729 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
8 | df-mpt 5250 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
9 | 7, 8 | eqtri 2768 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
10 | 3, 4, 6, 9 | fvopab3ig 7025 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 {copab 5228 ↦ cmpt 5249 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: fvmpti 7028 fvmpt 7029 fvmpt2f 7030 fvtresfn 7031 fvmpts 7032 fvmpt3 7033 fvmptd3 7052 fvmptss2 7055 f1mpt 7298 bropfvvvv 8133 tz7.44-3 8464 pw2f1olem 9142 wdom2d 9649 tz9.12lem3 9858 djurcl 9980 djur 9988 djuun 9995 cardval3 10021 cfval 10316 coftr 10342 fin1a2lem1 10469 fin1a2lem12 10480 axdc2lem 10517 pwcfsdom 10652 tskmval 10908 lsw 14612 swrdswrd 14753 trclfv 15049 relexpsucnnr 15074 dfrtrclrec2 15107 rtrclreclem2 15108 summolem2a 15763 prodmolem2a 15982 divsfval 17607 joinfval 18443 meetfval 18457 symgextfv 19460 symgextfve 19461 pmtrdifwrdel2lem1 19526 efgtf 19764 rrgsupp 20723 uvcvval 21829 ply1sclid 22312 submaval0 22607 m2detleiblem3 22656 m2detleiblem4 22657 maduval 22665 minmar1val0 22674 toponsspwpw 22949 cldval 23052 ntrfval 23053 clsfval 23054 opncldf3 23115 neifval 23128 lpfval 23167 islocfin 23546 kqfval 23752 stdbdxmet 24549 cmetcaulem 25341 bcth3 25384 itg2gt0 25815 ellimc2 25932 coe1termlem 26317 bdayval 27711 oldval 27911 clwlkclwwlkfo 30041 grpoinvfval 30554 grpodivfval 30566 nlfnval 31913 sigaval 34075 measval 34162 measdivcst 34188 measdivcstALTV 34189 probfinmeasbALTV 34394 ptpconn 35201 cvmsval 35234 ex-sategoelel12 35395 imageval 35894 fvimage 35895 tailfval 36338 tailval 36339 curfv 37560 heiborlem4 37774 lkrval 39044 cdleme31fv 40347 docavalN 41080 dochval 41308 mapdval 41585 hvmapval 41717 hvmapvalvalN 41718 hdmap1vallem 41754 hdmapval 41785 hgmapval 41844 mzpval 42688 mzpsubst 42704 pw2f1o2val 42996 refsum2cnlem1 44937 stoweidlem26 45947 stirlinglem8 46002 fourierdlem50 46077 caragenval 46414 fargshiftfv 47313 lincvalsc0 48150 linc0scn0 48152 linc1 48154 lincscm 48159 |
Copyright terms: Public domain | W3C validator |