| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2741 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2734 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 3681 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 5192 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2753 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 6967 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃*wmo 2532 {copab 5172 ↦ cmpt 5191 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: fvmpti 6970 fvmpt 6971 fvmpt2f 6972 fvtresfn 6973 fvmpts 6974 fvmpt3 6975 fvmptd3 6994 fvmptss2 6997 f1mpt 7239 bropfvvvv 8074 tz7.44-3 8379 pw2f1olem 9050 wdom2d 9540 tz9.12lem3 9749 djurcl 9871 djur 9879 djuun 9886 cardval3 9912 cfval 10207 coftr 10233 fin1a2lem1 10360 fin1a2lem12 10371 axdc2lem 10408 pwcfsdom 10543 tskmval 10799 lsw 14536 swrdswrd 14677 trclfv 14973 relexpsucnnr 14998 dfrtrclrec2 15031 rtrclreclem2 15032 summolem2a 15688 prodmolem2a 15907 divsfval 17517 joinfval 18339 meetfval 18353 symgextfv 19355 symgextfve 19356 pmtrdifwrdel2lem1 19421 efgtf 19659 rrgsupp 20617 uvcvval 21702 ply1sclid 22181 submaval0 22474 m2detleiblem3 22523 m2detleiblem4 22524 maduval 22532 minmar1val0 22541 toponsspwpw 22816 cldval 22917 ntrfval 22918 clsfval 22919 opncldf3 22980 neifval 22993 lpfval 23032 islocfin 23411 kqfval 23617 stdbdxmet 24410 cmetcaulem 25195 bcth3 25238 itg2gt0 25668 ellimc2 25785 coe1termlem 26170 bdayval 27567 oldval 27769 clwlkclwwlkfo 29945 grpoinvfval 30458 grpodivfval 30470 nlfnval 31817 sigaval 34108 measval 34195 measdivcst 34221 measdivcstALTV 34222 probfinmeasbALTV 34427 ptpconn 35227 cvmsval 35260 ex-sategoelel12 35421 imageval 35925 fvimage 35926 tailfval 36367 tailval 36368 curfv 37601 heiborlem4 37815 lkrval 39088 cdleme31fv 40391 docavalN 41124 dochval 41352 mapdval 41629 hvmapval 41761 hvmapvalvalN 41762 hdmap1vallem 41798 hdmapval 41829 hgmapval 41888 mzpval 42727 mzpsubst 42743 pw2f1o2val 43035 refsum2cnlem1 45038 stoweidlem26 46031 stirlinglem8 46086 fourierdlem50 46161 caragenval 46498 fargshiftfv 47444 lincvalsc0 48414 linc0scn0 48416 linc1 48418 lincscm 48423 |
| Copyright terms: Public domain | W3C validator |