Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eqeq2d 2750 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
4 | eqeq1 2743 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
5 | moeq 3643 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
8 | df-mpt 5159 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
9 | 7, 8 | eqtri 2767 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
10 | 3, 4, 6, 9 | fvopab3ig 6880 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∃*wmo 2539 {copab 5137 ↦ cmpt 5158 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fv 6445 |
This theorem is referenced by: fvmpti 6883 fvmpt 6884 fvmpt2f 6885 fvtresfn 6886 fvmpts 6887 fvmpt3 6888 fvmptd3 6907 fvmptss2 6909 f1mpt 7143 bropfvvvv 7941 tz7.44-3 8248 pw2f1olem 8872 wdom2d 9348 tz9.12lem3 9556 djurcl 9678 djur 9686 djuun 9693 cardval3 9719 cfval 10012 coftr 10038 fin1a2lem1 10165 fin1a2lem12 10176 axdc2lem 10213 pwcfsdom 10348 tskmval 10604 lsw 14276 swrdswrd 14427 trclfv 14720 relexpsucnnr 14745 dfrtrclrec2 14778 rtrclreclem2 14779 summolem2a 15436 prodmolem2a 15653 divsfval 17267 joinfval 18100 meetfval 18114 symgextfv 19035 symgextfve 19036 pmtrdifwrdel2lem1 19101 efgtf 19337 rrgsupp 20571 uvcvval 21002 ply1sclid 21468 submaval0 21738 m2detleiblem3 21787 m2detleiblem4 21788 maduval 21796 minmar1val0 21805 toponsspwpw 22080 cldval 22183 ntrfval 22184 clsfval 22185 opncldf3 22246 neifval 22259 lpfval 22298 islocfin 22677 kqfval 22883 stdbdxmet 23680 cmetcaulem 24461 bcth3 24504 itg2gt0 24934 ellimc2 25050 coe1termlem 25428 clwlkclwwlkfo 28382 grpoinvfval 28893 grpodivfval 28905 nlfnval 30252 sigaval 32088 measval 32175 measdivcst 32201 measdivcstALTV 32202 probfinmeasbALTV 32405 ptpconn 33204 cvmsval 33237 ex-sategoelel12 33398 bdayval 33860 oldval 34047 imageval 34241 fvimage 34242 tailfval 34570 tailval 34571 curfv 35766 heiborlem4 35981 lkrval 37109 cdleme31fv 38411 docavalN 39144 dochval 39372 mapdval 39649 hvmapval 39781 hvmapvalvalN 39782 hdmap1vallem 39818 hdmapval 39849 hgmapval 39908 mzpval 40561 mzpsubst 40577 pw2f1o2val 40868 refsum2cnlem1 42587 stoweidlem26 43574 stirlinglem8 43629 fourierdlem50 43704 caragenval 44038 fargshiftfv 44902 lincvalsc0 45773 linc0scn0 45775 linc1 45777 lincscm 45782 |
Copyright terms: Public domain | W3C validator |