| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2740 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2733 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 3669 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 5177 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2752 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 6930 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 {copab 5157 ↦ cmpt 5176 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: fvmpti 6933 fvmpt 6934 fvmpt2f 6935 fvtresfn 6936 fvmpts 6937 fvmpt3 6938 fvmptd3 6957 fvmptss2 6960 f1mpt 7202 bropfvvvv 8032 tz7.44-3 8337 pw2f1olem 9005 wdom2d 9491 tz9.12lem3 9704 djurcl 9826 djur 9834 djuun 9841 cardval3 9867 cfval 10160 coftr 10186 fin1a2lem1 10313 fin1a2lem12 10324 axdc2lem 10361 pwcfsdom 10496 tskmval 10752 lsw 14489 swrdswrd 14629 trclfv 14925 relexpsucnnr 14950 dfrtrclrec2 14983 rtrclreclem2 14984 summolem2a 15640 prodmolem2a 15859 divsfval 17469 joinfval 18295 meetfval 18309 symgextfv 19315 symgextfve 19316 pmtrdifwrdel2lem1 19381 efgtf 19619 rrgsupp 20604 uvcvval 21711 ply1sclid 22190 submaval0 22483 m2detleiblem3 22532 m2detleiblem4 22533 maduval 22541 minmar1val0 22550 toponsspwpw 22825 cldval 22926 ntrfval 22927 clsfval 22928 opncldf3 22989 neifval 23002 lpfval 23041 islocfin 23420 kqfval 23626 stdbdxmet 24419 cmetcaulem 25204 bcth3 25247 itg2gt0 25677 ellimc2 25794 coe1termlem 26179 bdayval 27576 oldval 27782 clwlkclwwlkfo 29971 grpoinvfval 30484 grpodivfval 30496 nlfnval 31843 sigaval 34077 measval 34164 measdivcst 34190 measdivcstALTV 34191 probfinmeasbALTV 34396 ptpconn 35205 cvmsval 35238 ex-sategoelel12 35399 imageval 35903 fvimage 35904 tailfval 36345 tailval 36346 curfv 37579 heiborlem4 37793 lkrval 39066 cdleme31fv 40369 docavalN 41102 dochval 41330 mapdval 41607 hvmapval 41739 hvmapvalvalN 41740 hdmap1vallem 41776 hdmapval 41807 hgmapval 41866 mzpval 42705 mzpsubst 42721 pw2f1o2val 43012 refsum2cnlem1 45015 stoweidlem26 46008 stirlinglem8 46063 fourierdlem50 46138 caragenval 46475 fargshiftfv 47424 lincvalsc0 48407 linc0scn0 48409 linc1 48411 lincscm 48416 |
| Copyright terms: Public domain | W3C validator |