| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2744 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2737 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 3662 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 5175 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2756 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 6931 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃*wmo 2535 {copab 5155 ↦ cmpt 5174 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: fvmpti 6934 fvmpt 6935 fvmpt2f 6936 fvtresfn 6937 fvmpts 6938 fvmpt3 6939 fvmptd3 6958 fvmptss2 6961 f1mpt 7201 bropfvvvv 8028 tz7.44-3 8333 pw2f1olem 9001 wdom2d 9473 tz9.12lem3 9689 djurcl 9811 djur 9819 djuun 9826 cardval3 9852 cfval 10145 coftr 10171 fin1a2lem1 10298 fin1a2lem12 10309 axdc2lem 10346 pwcfsdom 10481 tskmval 10737 lsw 14473 swrdswrd 14614 trclfv 14909 relexpsucnnr 14934 dfrtrclrec2 14967 rtrclreclem2 14968 summolem2a 15624 prodmolem2a 15843 divsfval 17453 joinfval 18279 meetfval 18293 symgextfv 19332 symgextfve 19333 pmtrdifwrdel2lem1 19398 efgtf 19636 rrgsupp 20618 uvcvval 21725 ply1sclid 22203 submaval0 22496 m2detleiblem3 22545 m2detleiblem4 22546 maduval 22554 minmar1val0 22563 toponsspwpw 22838 cldval 22939 ntrfval 22940 clsfval 22941 opncldf3 23002 neifval 23015 lpfval 23054 islocfin 23433 kqfval 23639 stdbdxmet 24431 cmetcaulem 25216 bcth3 25259 itg2gt0 25689 ellimc2 25806 coe1termlem 26191 bdayval 27588 oldval 27796 clwlkclwwlkfo 29991 grpoinvfval 30504 grpodivfval 30516 nlfnval 31863 sigaval 34145 measval 34232 measdivcst 34258 measdivcstALTV 34259 probfinmeasbALTV 34463 ptpconn 35298 cvmsval 35331 ex-sategoelel12 35492 imageval 35993 fvimage 35994 tailfval 36437 tailval 36438 curfv 37660 heiborlem4 37874 lkrval 39207 cdleme31fv 40509 docavalN 41242 dochval 41470 mapdval 41747 hvmapval 41879 hvmapvalvalN 41880 hdmap1vallem 41916 hdmapval 41947 hgmapval 42006 mzpval 42849 mzpsubst 42865 pw2f1o2val 43156 refsum2cnlem1 45158 stoweidlem26 46148 stirlinglem8 46203 fourierdlem50 46278 caragenval 46615 nthrucw 47008 fargshiftfv 47563 lincvalsc0 48546 linc0scn0 48548 linc1 48550 lincscm 48555 |
| Copyright terms: Public domain | W3C validator |