| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2740 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2733 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 3678 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 5189 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2752 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 6964 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 {copab 5169 ↦ cmpt 5188 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: fvmpti 6967 fvmpt 6968 fvmpt2f 6969 fvtresfn 6970 fvmpts 6971 fvmpt3 6972 fvmptd3 6991 fvmptss2 6994 f1mpt 7236 bropfvvvv 8071 tz7.44-3 8376 pw2f1olem 9045 wdom2d 9533 tz9.12lem3 9742 djurcl 9864 djur 9872 djuun 9879 cardval3 9905 cfval 10200 coftr 10226 fin1a2lem1 10353 fin1a2lem12 10364 axdc2lem 10401 pwcfsdom 10536 tskmval 10792 lsw 14529 swrdswrd 14670 trclfv 14966 relexpsucnnr 14991 dfrtrclrec2 15024 rtrclreclem2 15025 summolem2a 15681 prodmolem2a 15900 divsfval 17510 joinfval 18332 meetfval 18346 symgextfv 19348 symgextfve 19349 pmtrdifwrdel2lem1 19414 efgtf 19652 rrgsupp 20610 uvcvval 21695 ply1sclid 22174 submaval0 22467 m2detleiblem3 22516 m2detleiblem4 22517 maduval 22525 minmar1val0 22534 toponsspwpw 22809 cldval 22910 ntrfval 22911 clsfval 22912 opncldf3 22973 neifval 22986 lpfval 23025 islocfin 23404 kqfval 23610 stdbdxmet 24403 cmetcaulem 25188 bcth3 25231 itg2gt0 25661 ellimc2 25778 coe1termlem 26163 bdayval 27560 oldval 27762 clwlkclwwlkfo 29938 grpoinvfval 30451 grpodivfval 30463 nlfnval 31810 sigaval 34101 measval 34188 measdivcst 34214 measdivcstALTV 34215 probfinmeasbALTV 34420 ptpconn 35220 cvmsval 35253 ex-sategoelel12 35414 imageval 35918 fvimage 35919 tailfval 36360 tailval 36361 curfv 37594 heiborlem4 37808 lkrval 39081 cdleme31fv 40384 docavalN 41117 dochval 41345 mapdval 41622 hvmapval 41754 hvmapvalvalN 41755 hdmap1vallem 41791 hdmapval 41822 hgmapval 41881 mzpval 42720 mzpsubst 42736 pw2f1o2val 43028 refsum2cnlem1 45031 stoweidlem26 46024 stirlinglem8 46079 fourierdlem50 46154 caragenval 46491 fargshiftfv 47440 lincvalsc0 48410 linc0scn0 48412 linc1 48414 lincscm 48419 |
| Copyright terms: Public domain | W3C validator |