Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eqeq2d 2749 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
4 | eqeq1 2742 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
5 | moeq 3637 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
8 | df-mpt 5154 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
9 | 7, 8 | eqtri 2766 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
10 | 3, 4, 6, 9 | fvopab3ig 6853 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃*wmo 2538 {copab 5132 ↦ cmpt 5153 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: fvmpti 6856 fvmpt 6857 fvmpt2f 6858 fvtresfn 6859 fvmpts 6860 fvmpt3 6861 fvmptd3 6880 fvmptss2 6882 f1mpt 7115 bropfvvvv 7903 tz7.44-3 8210 pw2f1olem 8816 wdom2d 9269 tz9.12lem3 9478 djurcl 9600 djur 9608 djuun 9615 cardval3 9641 cfval 9934 coftr 9960 fin1a2lem1 10087 fin1a2lem12 10098 axdc2lem 10135 pwcfsdom 10270 tskmval 10526 lsw 14195 swrdswrd 14346 trclfv 14639 relexpsucnnr 14664 dfrtrclrec2 14697 rtrclreclem2 14698 summolem2a 15355 prodmolem2a 15572 divsfval 17175 joinfval 18006 meetfval 18020 symgextfv 18941 symgextfve 18942 pmtrdifwrdel2lem1 19007 efgtf 19243 rrgsupp 20475 uvcvval 20903 ply1sclid 21369 submaval0 21637 m2detleiblem3 21686 m2detleiblem4 21687 maduval 21695 minmar1val0 21704 toponsspwpw 21979 cldval 22082 ntrfval 22083 clsfval 22084 opncldf3 22145 neifval 22158 lpfval 22197 islocfin 22576 kqfval 22782 stdbdxmet 23577 cmetcaulem 24357 bcth3 24400 itg2gt0 24830 ellimc2 24946 coe1termlem 25324 clwlkclwwlkfo 28274 grpoinvfval 28785 grpodivfval 28797 nlfnval 30144 sigaval 31979 measval 32066 measdivcst 32092 measdivcstALTV 32093 probfinmeasbALTV 32296 ptpconn 33095 cvmsval 33128 ex-sategoelel12 33289 bdayval 33778 oldval 33965 imageval 34159 fvimage 34160 tailfval 34488 tailval 34489 curfv 35684 heiborlem4 35899 lkrval 37029 cdleme31fv 38331 docavalN 39064 dochval 39292 mapdval 39569 hvmapval 39701 hvmapvalvalN 39702 hdmap1vallem 39738 hdmapval 39769 hgmapval 39828 mzpval 40470 mzpsubst 40486 pw2f1o2val 40777 refsum2cnlem1 42469 stoweidlem26 43457 stirlinglem8 43512 fourierdlem50 43587 caragenval 43921 fargshiftfv 44779 lincvalsc0 45650 linc0scn0 45652 linc1 45654 lincscm 45659 |
Copyright terms: Public domain | W3C validator |