![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eqeq2d 2835 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
4 | eqeq1 2829 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
5 | moeq 3601 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
8 | df-mpt 4955 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
9 | 7, 8 | eqtri 2849 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
10 | 3, 4, 6, 9 | fvopab3ig 6529 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∃*wmo 2603 {copab 4937 ↦ cmpt 4954 ‘cfv 6127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 |
This theorem is referenced by: fvmpti 6532 fvmpt 6533 fvmpt2f 6534 fvtresfn 6535 fvmpts 6536 fvmpt3 6537 fvmptss2 6557 f1mpt 6778 undefval 7672 tz7.44-2 7774 tz7.44-3 7775 fvdiagfn 8175 pw2f1olem 8339 fival 8593 wdom2d 8761 tz9.12lem3 8936 djulcl 9056 djurcl 9057 djur 9065 djuun 9072 cardval3 9098 cfval 9391 coftr 9417 isf34lem1 9516 fin1a2lem1 9544 fin1a2lem12 9555 axdc2lem 9592 pwcfsdom 9727 tskmval 9983 lsw 13631 swrdswrd 13791 trclfv 14125 relexpsucnnr 14149 dfrtrclrec2 14181 rtrclreclem1 14182 summolem2a 14830 prodmolem2a 15044 divsfval 16567 joinfval 17361 meetfval 17375 symgextfv 18195 symgextfve 18196 pmtrval 18228 pmtrdifwrdel2lem1 18261 efgtf 18493 rrgsupp 19659 ply1sclid 20025 uvcval 20498 uvcvval 20499 submaval0 20761 m2detleiblem3 20810 m2detleiblem4 20811 maduval 20819 minmar1val0 20828 toponsspwpw 21104 tgval 21137 cldval 21205 ntrfval 21206 clsfval 21207 opncldf2 21267 opncldf3 21268 neifval 21281 neival 21284 lpfval 21320 islocfin 21698 kqfval 21904 stdbdxmet 22697 cmetcaulem 23463 bcth3 23506 itg2gt0 23933 ellimc2 24047 coe1termlem 24420 clwlkclwwlkfoOLD 27349 clwlkclwwlkfo 27353 clwlksfoclwwlkOLD 27439 clwlksf1clwwlkOLD 27445 grpoinvfval 27928 grpodivfval 27940 nlfnval 29291 sigaval 30714 measval 30802 measdivcstOLD 30828 measdivcst 30829 probfinmeasbOLD 31032 ptpconn 31757 cvmsval 31790 bdayval 32335 imageval 32571 fvimage 32572 tailfval 32900 tailval 32901 bj-diagval 33618 curfv 33931 heiborlem4 34154 lkrval 35162 cdleme31fv 36464 docavalN 37197 dochval 37425 mapdval 37702 hvmapval 37834 hvmapvalvalN 37835 hdmap1vallem 37871 hdmapval 37902 hgmapval 37961 mzpval 38138 mzpsubst 38154 pw2f1o2val 38448 eliunov2 38811 refsum2cnlem1 40013 stoweidlem26 41035 stirlinglem8 41090 fourierdlem50 41165 caragenval 41499 fargshiftfv 42261 lincvalsc0 43075 linc0scn0 43077 linc1 43079 lincscm 43084 |
Copyright terms: Public domain | W3C validator |