![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eqeq2d 2745 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
4 | eqeq1 2738 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
5 | moeq 3715 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
8 | df-mpt 5231 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
9 | 7, 8 | eqtri 2762 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
10 | 3, 4, 6, 9 | fvopab3ig 7011 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃*wmo 2535 {copab 5209 ↦ cmpt 5230 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 |
This theorem is referenced by: fvmpti 7014 fvmpt 7015 fvmpt2f 7016 fvtresfn 7017 fvmpts 7018 fvmpt3 7019 fvmptd3 7038 fvmptss2 7041 f1mpt 7280 bropfvvvv 8115 tz7.44-3 8446 pw2f1olem 9114 wdom2d 9617 tz9.12lem3 9826 djurcl 9948 djur 9956 djuun 9963 cardval3 9989 cfval 10284 coftr 10310 fin1a2lem1 10437 fin1a2lem12 10448 axdc2lem 10485 pwcfsdom 10620 tskmval 10876 lsw 14598 swrdswrd 14739 trclfv 15035 relexpsucnnr 15060 dfrtrclrec2 15093 rtrclreclem2 15094 summolem2a 15747 prodmolem2a 15966 divsfval 17593 joinfval 18430 meetfval 18444 symgextfv 19450 symgextfve 19451 pmtrdifwrdel2lem1 19516 efgtf 19754 rrgsupp 20717 uvcvval 21823 ply1sclid 22306 submaval0 22601 m2detleiblem3 22650 m2detleiblem4 22651 maduval 22659 minmar1val0 22668 toponsspwpw 22943 cldval 23046 ntrfval 23047 clsfval 23048 opncldf3 23109 neifval 23122 lpfval 23161 islocfin 23540 kqfval 23746 stdbdxmet 24543 cmetcaulem 25335 bcth3 25378 itg2gt0 25809 ellimc2 25926 coe1termlem 26311 bdayval 27707 oldval 27907 clwlkclwwlkfo 30037 grpoinvfval 30550 grpodivfval 30562 nlfnval 31909 sigaval 34091 measval 34178 measdivcst 34204 measdivcstALTV 34205 probfinmeasbALTV 34410 ptpconn 35217 cvmsval 35250 ex-sategoelel12 35411 imageval 35911 fvimage 35912 tailfval 36354 tailval 36355 curfv 37586 heiborlem4 37800 lkrval 39069 cdleme31fv 40372 docavalN 41105 dochval 41333 mapdval 41610 hvmapval 41742 hvmapvalvalN 41743 hdmap1vallem 41779 hdmapval 41810 hgmapval 41869 mzpval 42719 mzpsubst 42735 pw2f1o2val 43027 refsum2cnlem1 44974 stoweidlem26 45981 stirlinglem8 46036 fourierdlem50 46111 caragenval 46448 fargshiftfv 47363 lincvalsc0 48266 linc0scn0 48268 linc1 48270 lincscm 48275 |
Copyright terms: Public domain | W3C validator |