| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2742 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2735 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 3666 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 5173 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2754 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 6925 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 {copab 5153 ↦ cmpt 5172 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: fvmpti 6928 fvmpt 6929 fvmpt2f 6930 fvtresfn 6931 fvmpts 6932 fvmpt3 6933 fvmptd3 6952 fvmptss2 6955 f1mpt 7195 bropfvvvv 8022 tz7.44-3 8327 pw2f1olem 8994 wdom2d 9466 tz9.12lem3 9679 djurcl 9801 djur 9809 djuun 9816 cardval3 9842 cfval 10135 coftr 10161 fin1a2lem1 10288 fin1a2lem12 10299 axdc2lem 10336 pwcfsdom 10471 tskmval 10727 lsw 14468 swrdswrd 14609 trclfv 14904 relexpsucnnr 14929 dfrtrclrec2 14962 rtrclreclem2 14963 summolem2a 15619 prodmolem2a 15838 divsfval 17448 joinfval 18274 meetfval 18288 symgextfv 19328 symgextfve 19329 pmtrdifwrdel2lem1 19394 efgtf 19632 rrgsupp 20614 uvcvval 21721 ply1sclid 22200 submaval0 22493 m2detleiblem3 22542 m2detleiblem4 22543 maduval 22551 minmar1val0 22560 toponsspwpw 22835 cldval 22936 ntrfval 22937 clsfval 22938 opncldf3 22999 neifval 23012 lpfval 23051 islocfin 23430 kqfval 23636 stdbdxmet 24428 cmetcaulem 25213 bcth3 25256 itg2gt0 25686 ellimc2 25803 coe1termlem 26188 bdayval 27585 oldval 27793 clwlkclwwlkfo 29984 grpoinvfval 30497 grpodivfval 30509 nlfnval 31856 sigaval 34119 measval 34206 measdivcst 34232 measdivcstALTV 34233 probfinmeasbALTV 34437 ptpconn 35265 cvmsval 35298 ex-sategoelel12 35459 imageval 35963 fvimage 35964 tailfval 36405 tailval 36406 curfv 37639 heiborlem4 37853 lkrval 39126 cdleme31fv 40428 docavalN 41161 dochval 41389 mapdval 41666 hvmapval 41798 hvmapvalvalN 41799 hdmap1vallem 41835 hdmapval 41866 hgmapval 41925 mzpval 42764 mzpsubst 42780 pw2f1o2val 43071 refsum2cnlem1 45073 stoweidlem26 46063 stirlinglem8 46118 fourierdlem50 46193 caragenval 46530 fargshiftfv 47469 lincvalsc0 48452 linc0scn0 48454 linc1 48456 lincscm 48461 |
| Copyright terms: Public domain | W3C validator |