| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptg | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2746 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2739 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 3690 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 5202 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2758 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 6981 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃*wmo 2537 {copab 5181 ↦ cmpt 5201 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 |
| This theorem is referenced by: fvmpti 6984 fvmpt 6985 fvmpt2f 6986 fvtresfn 6987 fvmpts 6988 fvmpt3 6989 fvmptd3 7008 fvmptss2 7011 f1mpt 7253 bropfvvvv 8089 tz7.44-3 8420 pw2f1olem 9088 wdom2d 9592 tz9.12lem3 9801 djurcl 9923 djur 9931 djuun 9938 cardval3 9964 cfval 10259 coftr 10285 fin1a2lem1 10412 fin1a2lem12 10423 axdc2lem 10460 pwcfsdom 10595 tskmval 10851 lsw 14580 swrdswrd 14721 trclfv 15017 relexpsucnnr 15042 dfrtrclrec2 15075 rtrclreclem2 15076 summolem2a 15729 prodmolem2a 15948 divsfval 17559 joinfval 18381 meetfval 18395 symgextfv 19397 symgextfve 19398 pmtrdifwrdel2lem1 19463 efgtf 19701 rrgsupp 20659 uvcvval 21744 ply1sclid 22223 submaval0 22516 m2detleiblem3 22565 m2detleiblem4 22566 maduval 22574 minmar1val0 22583 toponsspwpw 22858 cldval 22959 ntrfval 22960 clsfval 22961 opncldf3 23022 neifval 23035 lpfval 23074 islocfin 23453 kqfval 23659 stdbdxmet 24452 cmetcaulem 25238 bcth3 25281 itg2gt0 25711 ellimc2 25828 coe1termlem 26213 bdayval 27610 oldval 27810 clwlkclwwlkfo 29936 grpoinvfval 30449 grpodivfval 30461 nlfnval 31808 sigaval 34088 measval 34175 measdivcst 34201 measdivcstALTV 34202 probfinmeasbALTV 34407 ptpconn 35201 cvmsval 35234 ex-sategoelel12 35395 imageval 35894 fvimage 35895 tailfval 36336 tailval 36337 curfv 37570 heiborlem4 37784 lkrval 39052 cdleme31fv 40355 docavalN 41088 dochval 41316 mapdval 41593 hvmapval 41725 hvmapvalvalN 41726 hdmap1vallem 41762 hdmapval 41793 hgmapval 41852 mzpval 42702 mzpsubst 42718 pw2f1o2val 43010 refsum2cnlem1 45009 stoweidlem26 46003 stirlinglem8 46058 fourierdlem50 46133 caragenval 46470 fargshiftfv 47401 lincvalsc0 48345 linc0scn0 48347 linc1 48349 lincscm 48354 |
| Copyright terms: Public domain | W3C validator |