Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptf1 Structured version   Visualization version   GIF version

Theorem 2arymaptf1 45233
 Description: The mapping of binary (endo)functions is a one-to-one function into the set of binary operations. (Contributed by AV, 22-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptf1 (𝑋𝑉𝐻:(2-aryF 𝑋)–1-1→(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptf1
Dummy variables 𝑧 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2arymaptf.h . . 3 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
212arymaptf 45232 . 2 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
312arymaptfv 45231 . . . . . 6 (𝑓 ∈ (2-aryF 𝑋) → (𝐻𝑓) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
43ad2antrl 727 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → (𝐻𝑓) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
512arymaptfv 45231 . . . . . 6 (𝑔 ∈ (2-aryF 𝑋) → (𝐻𝑔) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
65ad2antll 728 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → (𝐻𝑔) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
74, 6eqeq12d 2814 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))))
8 fvex 6668 . . . . . . 7 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ∈ V
98rgen2w 3119 . . . . . 6 𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ∈ V
10 mpo2eqb 7273 . . . . . 6 (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ∈ V → ((𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ↔ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
119, 10mp1i 13 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ↔ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
12 2aryfvalel 45227 . . . . . . . 8 (𝑋𝑉 → (𝑓 ∈ (2-aryF 𝑋) ↔ 𝑓:(𝑋m {0, 1})⟶𝑋))
13 2aryfvalel 45227 . . . . . . . 8 (𝑋𝑉 → (𝑔 ∈ (2-aryF 𝑋) ↔ 𝑔:(𝑋m {0, 1})⟶𝑋))
1412, 13anbi12d 633 . . . . . . 7 (𝑋𝑉 → ((𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋)) ↔ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋)))
15 ffn 6495 . . . . . . . . . . 11 (𝑓:(𝑋m {0, 1})⟶𝑋𝑓 Fn (𝑋m {0, 1}))
1615adantr 484 . . . . . . . . . 10 ((𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) → 𝑓 Fn (𝑋m {0, 1}))
17163ad2ant2 1131 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑓 Fn (𝑋m {0, 1}))
18 ffn 6495 . . . . . . . . . . 11 (𝑔:(𝑋m {0, 1})⟶𝑋𝑔 Fn (𝑋m {0, 1}))
1918adantl 485 . . . . . . . . . 10 ((𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) → 𝑔 Fn (𝑋m {0, 1}))
20193ad2ant2 1131 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑔 Fn (𝑋m {0, 1}))
21 elmapi 8429 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋m {0, 1}) → 𝑧:{0, 1}⟶𝑋)
22 0ne1 11714 . . . . . . . . . . . . 13 0 ≠ 1
23 c0ex 10642 . . . . . . . . . . . . . 14 0 ∈ V
24 1ex 10644 . . . . . . . . . . . . . 14 1 ∈ V
2523, 24fprb 6943 . . . . . . . . . . . . 13 (0 ≠ 1 → (𝑧:{0, 1}⟶𝑋 ↔ ∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
2622, 25ax-mp 5 . . . . . . . . . . . 12 (𝑧:{0, 1}⟶𝑋 ↔ ∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩})
2721, 26sylib 221 . . . . . . . . . . 11 (𝑧 ∈ (𝑋m {0, 1}) → ∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩})
28 opeq2 4769 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → ⟨0, 𝑥⟩ = ⟨0, 𝑎⟩)
2928preq1d 4638 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} = {⟨0, 𝑎⟩, ⟨1, 𝑦⟩})
3029fveq2d 6659 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}))
3129fveq2d 6659 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}))
3230, 31eqeq12d 2814 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩})))
33 opeq2 4769 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑏 → ⟨1, 𝑦⟩ = ⟨1, 𝑏⟩)
3433preq2d 4639 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → {⟨0, 𝑎⟩, ⟨1, 𝑦⟩} = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩})
3534fveq2d 6659 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
3634fveq2d 6659 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
3735, 36eqeq12d 2814 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
3832, 37rspc2va 3583 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑋𝑏𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
3938expcom 417 . . . . . . . . . . . . . . . . 17 (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → ((𝑎𝑋𝑏𝑋) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
40393ad2ant3 1132 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → ((𝑎𝑋𝑏𝑋) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4140com12 32 . . . . . . . . . . . . . . 15 ((𝑎𝑋𝑏𝑋) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4241adantr 484 . . . . . . . . . . . . . 14 (((𝑎𝑋𝑏𝑋) ∧ 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
43 fveq2 6655 . . . . . . . . . . . . . . . 16 (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → (𝑓𝑧) = (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
44 fveq2 6655 . . . . . . . . . . . . . . . 16 (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → (𝑔𝑧) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
4543, 44eqeq12d 2814 . . . . . . . . . . . . . . 15 (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → ((𝑓𝑧) = (𝑔𝑧) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4645adantl 485 . . . . . . . . . . . . . 14 (((𝑎𝑋𝑏𝑋) ∧ 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) → ((𝑓𝑧) = (𝑔𝑧) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4742, 46sylibrd 262 . . . . . . . . . . . . 13 (((𝑎𝑋𝑏𝑋) ∧ 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧)))
4847ex 416 . . . . . . . . . . . 12 ((𝑎𝑋𝑏𝑋) → (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧))))
4948rexlimivv 3252 . . . . . . . . . . 11 (∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧)))
5027, 49syl 17 . . . . . . . . . 10 (𝑧 ∈ (𝑋m {0, 1}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧)))
5150impcom 411 . . . . . . . . 9 (((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∧ 𝑧 ∈ (𝑋m {0, 1})) → (𝑓𝑧) = (𝑔𝑧))
5217, 20, 51eqfnfvd 6792 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑓 = 𝑔)
53523exp 1116 . . . . . . 7 (𝑋𝑉 → ((𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → 𝑓 = 𝑔)))
5414, 53sylbid 243 . . . . . 6 (𝑋𝑉 → ((𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋)) → (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → 𝑓 = 𝑔)))
5554imp 410 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → 𝑓 = 𝑔))
5611, 55sylbid 243 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑓 = 𝑔))
577, 56sylbid 243 . . 3 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
5857ralrimivva 3156 . 2 (𝑋𝑉 → ∀𝑓 ∈ (2-aryF 𝑋)∀𝑔 ∈ (2-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
59 dff13 7001 . 2 (𝐻:(2-aryF 𝑋)–1-1→(𝑋m (𝑋 × 𝑋)) ↔ (𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)) ∧ ∀𝑓 ∈ (2-aryF 𝑋)∀𝑔 ∈ (2-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔)))
602, 58, 59sylanbrc 586 1 (𝑋𝑉𝐻:(2-aryF 𝑋)–1-1→(𝑋m (𝑋 × 𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  Vcvv 3442  {cpr 4530  ⟨cop 4534   ↦ cmpt 5114   × cxp 5521   Fn wfn 6327  ⟶wf 6328  –1-1→wf1 6329  ‘cfv 6332  (class class class)co 7145   ∈ cmpo 7147   ↑m cmap 8407  0cc0 10544  1c1 10545  2c2 11698  -aryF cnaryf 45206 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906  df-fzo 13049  df-naryf 45207 This theorem is referenced by:  2arymaptf1o  45235
 Copyright terms: Public domain W3C validator