Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptf1 Structured version   Visualization version   GIF version

Theorem 2arymaptf1 48642
Description: The mapping of binary (endo)functions is a one-to-one function into the set of binary operations. (Contributed by AV, 22-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptf1 (𝑋𝑉𝐻:(2-aryF 𝑋)–1-1→(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptf1
Dummy variables 𝑧 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2arymaptf.h . . 3 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
212arymaptf 48641 . 2 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
312arymaptfv 48640 . . . . . 6 (𝑓 ∈ (2-aryF 𝑋) → (𝐻𝑓) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
43ad2antrl 728 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → (𝐻𝑓) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
512arymaptfv 48640 . . . . . 6 (𝑔 ∈ (2-aryF 𝑋) → (𝐻𝑔) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
65ad2antll 729 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → (𝐻𝑔) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
74, 6eqeq12d 2745 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))))
8 fvex 6871 . . . . . . 7 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ∈ V
98rgen2w 3049 . . . . . 6 𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ∈ V
10 mpo2eqb 7521 . . . . . 6 (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ∈ V → ((𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ↔ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
119, 10mp1i 13 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ↔ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
12 2aryfvalel 48636 . . . . . . . 8 (𝑋𝑉 → (𝑓 ∈ (2-aryF 𝑋) ↔ 𝑓:(𝑋m {0, 1})⟶𝑋))
13 2aryfvalel 48636 . . . . . . . 8 (𝑋𝑉 → (𝑔 ∈ (2-aryF 𝑋) ↔ 𝑔:(𝑋m {0, 1})⟶𝑋))
1412, 13anbi12d 632 . . . . . . 7 (𝑋𝑉 → ((𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋)) ↔ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋)))
15 ffn 6688 . . . . . . . . . . 11 (𝑓:(𝑋m {0, 1})⟶𝑋𝑓 Fn (𝑋m {0, 1}))
1615adantr 480 . . . . . . . . . 10 ((𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) → 𝑓 Fn (𝑋m {0, 1}))
17163ad2ant2 1134 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑓 Fn (𝑋m {0, 1}))
18 ffn 6688 . . . . . . . . . . 11 (𝑔:(𝑋m {0, 1})⟶𝑋𝑔 Fn (𝑋m {0, 1}))
1918adantl 481 . . . . . . . . . 10 ((𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) → 𝑔 Fn (𝑋m {0, 1}))
20193ad2ant2 1134 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑔 Fn (𝑋m {0, 1}))
21 elmapi 8822 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋m {0, 1}) → 𝑧:{0, 1}⟶𝑋)
22 0ne1 12257 . . . . . . . . . . . . 13 0 ≠ 1
23 c0ex 11168 . . . . . . . . . . . . . 14 0 ∈ V
24 1ex 11170 . . . . . . . . . . . . . 14 1 ∈ V
2523, 24fprb 7168 . . . . . . . . . . . . 13 (0 ≠ 1 → (𝑧:{0, 1}⟶𝑋 ↔ ∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
2622, 25ax-mp 5 . . . . . . . . . . . 12 (𝑧:{0, 1}⟶𝑋 ↔ ∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩})
2721, 26sylib 218 . . . . . . . . . . 11 (𝑧 ∈ (𝑋m {0, 1}) → ∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩})
28 opeq2 4838 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → ⟨0, 𝑥⟩ = ⟨0, 𝑎⟩)
2928preq1d 4703 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} = {⟨0, 𝑎⟩, ⟨1, 𝑦⟩})
3029fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}))
3129fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}))
3230, 31eqeq12d 2745 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩})))
33 opeq2 4838 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑏 → ⟨1, 𝑦⟩ = ⟨1, 𝑏⟩)
3433preq2d 4704 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → {⟨0, 𝑎⟩, ⟨1, 𝑦⟩} = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩})
3534fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
3634fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
3735, 36eqeq12d 2745 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
3832, 37rspc2va 3600 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑋𝑏𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
3938expcom 413 . . . . . . . . . . . . . . . . 17 (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → ((𝑎𝑋𝑏𝑋) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
40393ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → ((𝑎𝑋𝑏𝑋) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4140com12 32 . . . . . . . . . . . . . . 15 ((𝑎𝑋𝑏𝑋) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4241adantr 480 . . . . . . . . . . . . . 14 (((𝑎𝑋𝑏𝑋) ∧ 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
43 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → (𝑓𝑧) = (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
44 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → (𝑔𝑧) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
4543, 44eqeq12d 2745 . . . . . . . . . . . . . . 15 (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → ((𝑓𝑧) = (𝑔𝑧) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4645adantl 481 . . . . . . . . . . . . . 14 (((𝑎𝑋𝑏𝑋) ∧ 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) → ((𝑓𝑧) = (𝑔𝑧) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4742, 46sylibrd 259 . . . . . . . . . . . . 13 (((𝑎𝑋𝑏𝑋) ∧ 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧)))
4847ex 412 . . . . . . . . . . . 12 ((𝑎𝑋𝑏𝑋) → (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧))))
4948rexlimivv 3179 . . . . . . . . . . 11 (∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧)))
5027, 49syl 17 . . . . . . . . . 10 (𝑧 ∈ (𝑋m {0, 1}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧)))
5150impcom 407 . . . . . . . . 9 (((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∧ 𝑧 ∈ (𝑋m {0, 1})) → (𝑓𝑧) = (𝑔𝑧))
5217, 20, 51eqfnfvd 7006 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑓 = 𝑔)
53523exp 1119 . . . . . . 7 (𝑋𝑉 → ((𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → 𝑓 = 𝑔)))
5414, 53sylbid 240 . . . . . 6 (𝑋𝑉 → ((𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋)) → (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → 𝑓 = 𝑔)))
5554imp 406 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → 𝑓 = 𝑔))
5611, 55sylbid 240 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑓 = 𝑔))
577, 56sylbid 240 . . 3 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
5857ralrimivva 3180 . 2 (𝑋𝑉 → ∀𝑓 ∈ (2-aryF 𝑋)∀𝑔 ∈ (2-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
59 dff13 7229 . 2 (𝐻:(2-aryF 𝑋)–1-1→(𝑋m (𝑋 × 𝑋)) ↔ (𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)) ∧ ∀𝑓 ∈ (2-aryF 𝑋)∀𝑔 ∈ (2-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔)))
602, 58, 59sylanbrc 583 1 (𝑋𝑉𝐻:(2-aryF 𝑋)–1-1→(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  {cpr 4591  cop 4595  cmpt 5188   × cxp 5636   Fn wfn 6506  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  0cc0 11068  1c1 11069  2c2 12241  -aryF cnaryf 48615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-naryf 48616
This theorem is referenced by:  2arymaptf1o  48644
  Copyright terms: Public domain W3C validator