Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptf1 Structured version   Visualization version   GIF version

Theorem 2arymaptf1 47292
Description: The mapping of binary (endo)functions is a one-to-one function into the set of binary operations. (Contributed by AV, 22-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptf1 (𝑋𝑉𝐻:(2-aryF 𝑋)–1-1→(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptf1
Dummy variables 𝑧 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2arymaptf.h . . 3 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
212arymaptf 47291 . 2 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
312arymaptfv 47290 . . . . . 6 (𝑓 ∈ (2-aryF 𝑋) → (𝐻𝑓) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
43ad2antrl 726 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → (𝐻𝑓) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
512arymaptfv 47290 . . . . . 6 (𝑔 ∈ (2-aryF 𝑋) → (𝐻𝑔) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
65ad2antll 727 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → (𝐻𝑔) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
74, 6eqeq12d 2748 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))))
8 fvex 6901 . . . . . . 7 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ∈ V
98rgen2w 3066 . . . . . 6 𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ∈ V
10 mpo2eqb 7537 . . . . . 6 (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ∈ V → ((𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ↔ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
119, 10mp1i 13 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ↔ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
12 2aryfvalel 47286 . . . . . . . 8 (𝑋𝑉 → (𝑓 ∈ (2-aryF 𝑋) ↔ 𝑓:(𝑋m {0, 1})⟶𝑋))
13 2aryfvalel 47286 . . . . . . . 8 (𝑋𝑉 → (𝑔 ∈ (2-aryF 𝑋) ↔ 𝑔:(𝑋m {0, 1})⟶𝑋))
1412, 13anbi12d 631 . . . . . . 7 (𝑋𝑉 → ((𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋)) ↔ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋)))
15 ffn 6714 . . . . . . . . . . 11 (𝑓:(𝑋m {0, 1})⟶𝑋𝑓 Fn (𝑋m {0, 1}))
1615adantr 481 . . . . . . . . . 10 ((𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) → 𝑓 Fn (𝑋m {0, 1}))
17163ad2ant2 1134 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑓 Fn (𝑋m {0, 1}))
18 ffn 6714 . . . . . . . . . . 11 (𝑔:(𝑋m {0, 1})⟶𝑋𝑔 Fn (𝑋m {0, 1}))
1918adantl 482 . . . . . . . . . 10 ((𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) → 𝑔 Fn (𝑋m {0, 1}))
20193ad2ant2 1134 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑔 Fn (𝑋m {0, 1}))
21 elmapi 8839 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋m {0, 1}) → 𝑧:{0, 1}⟶𝑋)
22 0ne1 12279 . . . . . . . . . . . . 13 0 ≠ 1
23 c0ex 11204 . . . . . . . . . . . . . 14 0 ∈ V
24 1ex 11206 . . . . . . . . . . . . . 14 1 ∈ V
2523, 24fprb 7191 . . . . . . . . . . . . 13 (0 ≠ 1 → (𝑧:{0, 1}⟶𝑋 ↔ ∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
2622, 25ax-mp 5 . . . . . . . . . . . 12 (𝑧:{0, 1}⟶𝑋 ↔ ∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩})
2721, 26sylib 217 . . . . . . . . . . 11 (𝑧 ∈ (𝑋m {0, 1}) → ∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩})
28 opeq2 4873 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → ⟨0, 𝑥⟩ = ⟨0, 𝑎⟩)
2928preq1d 4742 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → {⟨0, 𝑥⟩, ⟨1, 𝑦⟩} = {⟨0, 𝑎⟩, ⟨1, 𝑦⟩})
3029fveq2d 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}))
3129fveq2d 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}))
3230, 31eqeq12d 2748 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩})))
33 opeq2 4873 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑏 → ⟨1, 𝑦⟩ = ⟨1, 𝑏⟩)
3433preq2d 4743 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → {⟨0, 𝑎⟩, ⟨1, 𝑦⟩} = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩})
3534fveq2d 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
3634fveq2d 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
3735, 36eqeq12d 2748 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑦⟩}) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
3832, 37rspc2va 3622 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑋𝑏𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
3938expcom 414 . . . . . . . . . . . . . . . . 17 (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → ((𝑎𝑋𝑏𝑋) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
40393ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → ((𝑎𝑋𝑏𝑋) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4140com12 32 . . . . . . . . . . . . . . 15 ((𝑎𝑋𝑏𝑋) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4241adantr 481 . . . . . . . . . . . . . 14 (((𝑎𝑋𝑏𝑋) ∧ 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
43 fveq2 6888 . . . . . . . . . . . . . . . 16 (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → (𝑓𝑧) = (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
44 fveq2 6888 . . . . . . . . . . . . . . . 16 (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → (𝑔𝑧) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}))
4543, 44eqeq12d 2748 . . . . . . . . . . . . . . 15 (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → ((𝑓𝑧) = (𝑔𝑧) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4645adantl 482 . . . . . . . . . . . . . 14 (((𝑎𝑋𝑏𝑋) ∧ 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) → ((𝑓𝑧) = (𝑔𝑧) ↔ (𝑓‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) = (𝑔‘{⟨0, 𝑎⟩, ⟨1, 𝑏⟩})))
4742, 46sylibrd 258 . . . . . . . . . . . . 13 (((𝑎𝑋𝑏𝑋) ∧ 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧)))
4847ex 413 . . . . . . . . . . . 12 ((𝑎𝑋𝑏𝑋) → (𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧))))
4948rexlimivv 3199 . . . . . . . . . . 11 (∃𝑎𝑋𝑏𝑋 𝑧 = {⟨0, 𝑎⟩, ⟨1, 𝑏⟩} → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧)))
5027, 49syl 17 . . . . . . . . . 10 (𝑧 ∈ (𝑋m {0, 1}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → (𝑓𝑧) = (𝑔𝑧)))
5150impcom 408 . . . . . . . . 9 (((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∧ 𝑧 ∈ (𝑋m {0, 1})) → (𝑓𝑧) = (𝑔𝑧))
5217, 20, 51eqfnfvd 7032 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑓 = 𝑔)
53523exp 1119 . . . . . . 7 (𝑋𝑉 → ((𝑓:(𝑋m {0, 1})⟶𝑋𝑔:(𝑋m {0, 1})⟶𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → 𝑓 = 𝑔)))
5414, 53sylbid 239 . . . . . 6 (𝑋𝑉 → ((𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋)) → (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → 𝑓 = 𝑔)))
5554imp 407 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → (∀𝑥𝑋𝑦𝑋 (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) → 𝑓 = 𝑔))
5611, 55sylbid 239 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) → 𝑓 = 𝑔))
577, 56sylbid 239 . . 3 ((𝑋𝑉 ∧ (𝑓 ∈ (2-aryF 𝑋) ∧ 𝑔 ∈ (2-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
5857ralrimivva 3200 . 2 (𝑋𝑉 → ∀𝑓 ∈ (2-aryF 𝑋)∀𝑔 ∈ (2-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
59 dff13 7250 . 2 (𝐻:(2-aryF 𝑋)–1-1→(𝑋m (𝑋 × 𝑋)) ↔ (𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)) ∧ ∀𝑓 ∈ (2-aryF 𝑋)∀𝑔 ∈ (2-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔)))
602, 58, 59sylanbrc 583 1 (𝑋𝑉𝐻:(2-aryF 𝑋)–1-1→(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  Vcvv 3474  {cpr 4629  cop 4633  cmpt 5230   × cxp 5673   Fn wfn 6535  wf 6536  1-1wf1 6537  cfv 6540  (class class class)co 7405  cmpo 7407  m cmap 8816  0cc0 11106  1c1 11107  2c2 12263  -aryF cnaryf 47265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-naryf 47266
This theorem is referenced by:  2arymaptf1o  47294
  Copyright terms: Public domain W3C validator