MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeq Structured version   Visualization version   GIF version

Theorem comfeq 17667
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeq.1 · = (comp‘𝐶)
comfeq.2 = (comp‘𝐷)
comfeq.h 𝐻 = (Hom ‘𝐶)
comfeq.3 (𝜑𝐵 = (Base‘𝐶))
comfeq.4 (𝜑𝐵 = (Base‘𝐷))
comfeq.5 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
comfeq (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝐶,𝑓,𝑔,𝑧   𝜑,𝑓,𝑔,𝑧   · ,𝑓,𝑔,𝑥,𝑦   𝐷,𝑓,𝑔,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦   ,𝑓,𝑔,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   (𝑧)   · (𝑧)   𝐻(𝑧)

Proof of Theorem comfeq
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 comfeq.3 . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
21sqxpeqd 5670 . . . . 5 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)))
3 eqidd 2730 . . . . 5 (𝜑 → (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)))
42, 1, 3mpoeq123dv 7464 . . . 4 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))))
5 eqid 2729 . . . . 5 (compf𝐶) = (compf𝐶)
6 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 comfeq.h . . . . 5 𝐻 = (Hom ‘𝐶)
8 comfeq.1 . . . . 5 · = (comp‘𝐶)
95, 6, 7, 8comfffval 17659 . . . 4 (compf𝐶) = (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)))
104, 9eqtr4di 2782 . . 3 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (compf𝐶))
11 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
12 comfeq.5 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
13123ad2ant1 1133 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (Homf𝐶) = (Homf𝐷))
14 xp2nd 8001 . . . . . . . . . 10 (𝑢 ∈ (𝐵 × 𝐵) → (2nd𝑢) ∈ 𝐵)
15143ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (2nd𝑢) ∈ 𝐵)
1613ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝐵 = (Base‘𝐶))
1715, 16eleqtrd 2830 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (2nd𝑢) ∈ (Base‘𝐶))
18 simp3 1138 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
1918, 16eleqtrd 2830 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ (Base‘𝐶))
206, 7, 11, 13, 17, 19homfeqval 17658 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((2nd𝑢)𝐻𝑧) = ((2nd𝑢)(Hom ‘𝐷)𝑧))
21 xp1st 8000 . . . . . . . . . . . 12 (𝑢 ∈ (𝐵 × 𝐵) → (1st𝑢) ∈ 𝐵)
22213ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (1st𝑢) ∈ 𝐵)
2322, 16eleqtrd 2830 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (1st𝑢) ∈ (Base‘𝐶))
246, 7, 11, 13, 23, 17homfeqval 17658 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((1st𝑢)𝐻(2nd𝑢)) = ((1st𝑢)(Hom ‘𝐷)(2nd𝑢)))
25 df-ov 7390 . . . . . . . . 9 ((1st𝑢)𝐻(2nd𝑢)) = (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩)
26 df-ov 7390 . . . . . . . . 9 ((1st𝑢)(Hom ‘𝐷)(2nd𝑢)) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩)
2724, 25, 263eqtr3g 2787 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩))
28 1st2nd2 8007 . . . . . . . . . 10 (𝑢 ∈ (𝐵 × 𝐵) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
29283ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
3029fveq2d 6862 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻𝑢) = (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩))
3129fveq2d 6862 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩))
3227, 30, 313eqtr4d 2774 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻𝑢) = ((Hom ‘𝐷)‘𝑢))
33 eqidd 2730 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝑔(𝑢 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓))
3420, 32, 33mpoeq123dv 7464 . . . . . 6 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
3534mpoeq3dva 7466 . . . . 5 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
36 comfeq.4 . . . . . . 7 (𝜑𝐵 = (Base‘𝐷))
3736sqxpeqd 5670 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐷) × (Base‘𝐷)))
38 eqidd 2730 . . . . . 6 (𝜑 → (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
3937, 36, 38mpoeq123dv 7464 . . . . 5 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
4035, 39eqtrd 2764 . . . 4 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
41 eqid 2729 . . . . 5 (compf𝐷) = (compf𝐷)
42 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
43 comfeq.2 . . . . 5 = (comp‘𝐷)
4441, 42, 11, 43comfffval 17659 . . . 4 (compf𝐷) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
4540, 44eqtr4di 2782 . . 3 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (compf𝐷))
4610, 45eqeq12d 2745 . 2 (𝜑 → ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ (compf𝐶) = (compf𝐷)))
47 ovex 7420 . . . . . 6 ((2nd𝑢)𝐻𝑧) ∈ V
48 fvex 6871 . . . . . 6 (𝐻𝑢) ∈ V
4947, 48mpoex 8058 . . . . 5 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V
5049rgen2w 3049 . . . 4 𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V
51 mpo2eqb 7521 . . . 4 (∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V → ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
5250, 51ax-mp 5 . . 3 ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
53 vex 3451 . . . . . . . . 9 𝑥 ∈ V
54 vex 3451 . . . . . . . . 9 𝑦 ∈ V
5553, 54op2ndd 7979 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (2nd𝑢) = 𝑦)
5655oveq1d 7402 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → ((2nd𝑢)𝐻𝑧) = (𝑦𝐻𝑧))
57 fveq2 6858 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝐻𝑢) = (𝐻‘⟨𝑥, 𝑦⟩))
58 df-ov 7390 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
5957, 58eqtr4di 2782 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝐻𝑢) = (𝑥𝐻𝑦))
60 oveq1 7394 . . . . . . . . . 10 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 · 𝑧) = (⟨𝑥, 𝑦· 𝑧))
6160oveqd 7404 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑔(𝑢 · 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))
62 oveq1 7394 . . . . . . . . . 10 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 𝑧) = (⟨𝑥, 𝑦 𝑧))
6362oveqd 7404 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑔(𝑢 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
6461, 63eqeq12d 2745 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
6559, 64raleqbidv 3319 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
6656, 65raleqbidv 3319 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
67 ovex 7420 . . . . . . . 8 (𝑔(𝑢 · 𝑧)𝑓) ∈ V
6867rgen2w 3049 . . . . . . 7 𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) ∈ V
69 mpo2eqb 7521 . . . . . . 7 (∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) ∈ V → ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓)))
7068, 69ax-mp 5 . . . . . 6 ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓))
71 ralcom 3265 . . . . . 6 (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7266, 70, 713bitr4g 314 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
7372ralbidv 3156 . . . 4 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
7473ralxp 5805 . . 3 (∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7552, 74bitri 275 . 2 ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7646, 75bitr3di 286 1 (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  compcco 17232  Homf chomf 17627  compfccomf 17628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-homf 17631  df-comf 17632
This theorem is referenced by:  comfeqd  17668  2oppccomf  17686  oppccomfpropd  17688  resssetc  18054  resscatc  18071  resccatlem  49062  fthcomf  49146  oppcthinco  49428  oppcthinendcALT  49430  termolmd  49659
  Copyright terms: Public domain W3C validator