MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeq Structured version   Visualization version   GIF version

Theorem comfeq 17630
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeq.1 · = (comp‘𝐶)
comfeq.2 = (comp‘𝐷)
comfeq.h 𝐻 = (Hom ‘𝐶)
comfeq.3 (𝜑𝐵 = (Base‘𝐶))
comfeq.4 (𝜑𝐵 = (Base‘𝐷))
comfeq.5 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
comfeq (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝐶,𝑓,𝑔,𝑧   𝜑,𝑓,𝑔,𝑧   · ,𝑓,𝑔,𝑥,𝑦   𝐷,𝑓,𝑔,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦   ,𝑓,𝑔,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   (𝑧)   · (𝑧)   𝐻(𝑧)

Proof of Theorem comfeq
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 comfeq.3 . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
21sqxpeqd 5655 . . . . 5 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)))
3 eqidd 2730 . . . . 5 (𝜑 → (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)))
42, 1, 3mpoeq123dv 7428 . . . 4 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))))
5 eqid 2729 . . . . 5 (compf𝐶) = (compf𝐶)
6 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 comfeq.h . . . . 5 𝐻 = (Hom ‘𝐶)
8 comfeq.1 . . . . 5 · = (comp‘𝐶)
95, 6, 7, 8comfffval 17622 . . . 4 (compf𝐶) = (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)))
104, 9eqtr4di 2782 . . 3 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (compf𝐶))
11 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
12 comfeq.5 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
13123ad2ant1 1133 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (Homf𝐶) = (Homf𝐷))
14 xp2nd 7964 . . . . . . . . . 10 (𝑢 ∈ (𝐵 × 𝐵) → (2nd𝑢) ∈ 𝐵)
15143ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (2nd𝑢) ∈ 𝐵)
1613ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝐵 = (Base‘𝐶))
1715, 16eleqtrd 2830 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (2nd𝑢) ∈ (Base‘𝐶))
18 simp3 1138 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
1918, 16eleqtrd 2830 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ (Base‘𝐶))
206, 7, 11, 13, 17, 19homfeqval 17621 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((2nd𝑢)𝐻𝑧) = ((2nd𝑢)(Hom ‘𝐷)𝑧))
21 xp1st 7963 . . . . . . . . . . . 12 (𝑢 ∈ (𝐵 × 𝐵) → (1st𝑢) ∈ 𝐵)
22213ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (1st𝑢) ∈ 𝐵)
2322, 16eleqtrd 2830 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (1st𝑢) ∈ (Base‘𝐶))
246, 7, 11, 13, 23, 17homfeqval 17621 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((1st𝑢)𝐻(2nd𝑢)) = ((1st𝑢)(Hom ‘𝐷)(2nd𝑢)))
25 df-ov 7356 . . . . . . . . 9 ((1st𝑢)𝐻(2nd𝑢)) = (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩)
26 df-ov 7356 . . . . . . . . 9 ((1st𝑢)(Hom ‘𝐷)(2nd𝑢)) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩)
2724, 25, 263eqtr3g 2787 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩))
28 1st2nd2 7970 . . . . . . . . . 10 (𝑢 ∈ (𝐵 × 𝐵) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
29283ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
3029fveq2d 6830 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻𝑢) = (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩))
3129fveq2d 6830 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩))
3227, 30, 313eqtr4d 2774 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻𝑢) = ((Hom ‘𝐷)‘𝑢))
33 eqidd 2730 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝑔(𝑢 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓))
3420, 32, 33mpoeq123dv 7428 . . . . . 6 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
3534mpoeq3dva 7430 . . . . 5 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
36 comfeq.4 . . . . . . 7 (𝜑𝐵 = (Base‘𝐷))
3736sqxpeqd 5655 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐷) × (Base‘𝐷)))
38 eqidd 2730 . . . . . 6 (𝜑 → (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
3937, 36, 38mpoeq123dv 7428 . . . . 5 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
4035, 39eqtrd 2764 . . . 4 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
41 eqid 2729 . . . . 5 (compf𝐷) = (compf𝐷)
42 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
43 comfeq.2 . . . . 5 = (comp‘𝐷)
4441, 42, 11, 43comfffval 17622 . . . 4 (compf𝐷) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
4540, 44eqtr4di 2782 . . 3 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (compf𝐷))
4610, 45eqeq12d 2745 . 2 (𝜑 → ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ (compf𝐶) = (compf𝐷)))
47 ovex 7386 . . . . . 6 ((2nd𝑢)𝐻𝑧) ∈ V
48 fvex 6839 . . . . . 6 (𝐻𝑢) ∈ V
4947, 48mpoex 8021 . . . . 5 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V
5049rgen2w 3049 . . . 4 𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V
51 mpo2eqb 7485 . . . 4 (∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V → ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
5250, 51ax-mp 5 . . 3 ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
53 vex 3442 . . . . . . . . 9 𝑥 ∈ V
54 vex 3442 . . . . . . . . 9 𝑦 ∈ V
5553, 54op2ndd 7942 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (2nd𝑢) = 𝑦)
5655oveq1d 7368 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → ((2nd𝑢)𝐻𝑧) = (𝑦𝐻𝑧))
57 fveq2 6826 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝐻𝑢) = (𝐻‘⟨𝑥, 𝑦⟩))
58 df-ov 7356 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
5957, 58eqtr4di 2782 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝐻𝑢) = (𝑥𝐻𝑦))
60 oveq1 7360 . . . . . . . . . 10 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 · 𝑧) = (⟨𝑥, 𝑦· 𝑧))
6160oveqd 7370 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑔(𝑢 · 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))
62 oveq1 7360 . . . . . . . . . 10 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 𝑧) = (⟨𝑥, 𝑦 𝑧))
6362oveqd 7370 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑔(𝑢 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
6461, 63eqeq12d 2745 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
6559, 64raleqbidv 3310 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
6656, 65raleqbidv 3310 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
67 ovex 7386 . . . . . . . 8 (𝑔(𝑢 · 𝑧)𝑓) ∈ V
6867rgen2w 3049 . . . . . . 7 𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) ∈ V
69 mpo2eqb 7485 . . . . . . 7 (∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) ∈ V → ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓)))
7068, 69ax-mp 5 . . . . . 6 ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓))
71 ralcom 3257 . . . . . 6 (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7266, 70, 713bitr4g 314 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
7372ralbidv 3152 . . . 4 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
7473ralxp 5788 . . 3 (∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7552, 74bitri 275 . 2 ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7646, 75bitr3di 286 1 (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cop 4585   × cxp 5621  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  Hom chom 17190  compcco 17191  Homf chomf 17590  compfccomf 17591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-homf 17594  df-comf 17595
This theorem is referenced by:  comfeqd  17631  2oppccomf  17649  oppccomfpropd  17651  resssetc  18017  resscatc  18034  resccatlem  49059  fthcomf  49143  oppcthinco  49425  oppcthinendcALT  49427  termolmd  49656
  Copyright terms: Public domain W3C validator