MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeq Structured version   Visualization version   GIF version

Theorem comfeq 17609
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeq.1 · = (comp‘𝐶)
comfeq.2 = (comp‘𝐷)
comfeq.h 𝐻 = (Hom ‘𝐶)
comfeq.3 (𝜑𝐵 = (Base‘𝐶))
comfeq.4 (𝜑𝐵 = (Base‘𝐷))
comfeq.5 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
comfeq (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝐶,𝑓,𝑔,𝑧   𝜑,𝑓,𝑔,𝑧   · ,𝑓,𝑔,𝑥,𝑦   𝐷,𝑓,𝑔,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦   ,𝑓,𝑔,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   (𝑧)   · (𝑧)   𝐻(𝑧)

Proof of Theorem comfeq
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 comfeq.3 . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
21sqxpeqd 5648 . . . . 5 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)))
3 eqidd 2732 . . . . 5 (𝜑 → (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)))
42, 1, 3mpoeq123dv 7421 . . . 4 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))))
5 eqid 2731 . . . . 5 (compf𝐶) = (compf𝐶)
6 eqid 2731 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 comfeq.h . . . . 5 𝐻 = (Hom ‘𝐶)
8 comfeq.1 . . . . 5 · = (comp‘𝐶)
95, 6, 7, 8comfffval 17601 . . . 4 (compf𝐶) = (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)))
104, 9eqtr4di 2784 . . 3 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (compf𝐶))
11 eqid 2731 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
12 comfeq.5 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
13123ad2ant1 1133 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (Homf𝐶) = (Homf𝐷))
14 xp2nd 7954 . . . . . . . . . 10 (𝑢 ∈ (𝐵 × 𝐵) → (2nd𝑢) ∈ 𝐵)
15143ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (2nd𝑢) ∈ 𝐵)
1613ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝐵 = (Base‘𝐶))
1715, 16eleqtrd 2833 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (2nd𝑢) ∈ (Base‘𝐶))
18 simp3 1138 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
1918, 16eleqtrd 2833 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ (Base‘𝐶))
206, 7, 11, 13, 17, 19homfeqval 17600 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((2nd𝑢)𝐻𝑧) = ((2nd𝑢)(Hom ‘𝐷)𝑧))
21 xp1st 7953 . . . . . . . . . . . 12 (𝑢 ∈ (𝐵 × 𝐵) → (1st𝑢) ∈ 𝐵)
22213ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (1st𝑢) ∈ 𝐵)
2322, 16eleqtrd 2833 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (1st𝑢) ∈ (Base‘𝐶))
246, 7, 11, 13, 23, 17homfeqval 17600 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((1st𝑢)𝐻(2nd𝑢)) = ((1st𝑢)(Hom ‘𝐷)(2nd𝑢)))
25 df-ov 7349 . . . . . . . . 9 ((1st𝑢)𝐻(2nd𝑢)) = (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩)
26 df-ov 7349 . . . . . . . . 9 ((1st𝑢)(Hom ‘𝐷)(2nd𝑢)) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩)
2724, 25, 263eqtr3g 2789 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩))
28 1st2nd2 7960 . . . . . . . . . 10 (𝑢 ∈ (𝐵 × 𝐵) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
29283ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
3029fveq2d 6826 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻𝑢) = (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩))
3129fveq2d 6826 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩))
3227, 30, 313eqtr4d 2776 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻𝑢) = ((Hom ‘𝐷)‘𝑢))
33 eqidd 2732 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝑔(𝑢 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓))
3420, 32, 33mpoeq123dv 7421 . . . . . 6 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
3534mpoeq3dva 7423 . . . . 5 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
36 comfeq.4 . . . . . . 7 (𝜑𝐵 = (Base‘𝐷))
3736sqxpeqd 5648 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐷) × (Base‘𝐷)))
38 eqidd 2732 . . . . . 6 (𝜑 → (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
3937, 36, 38mpoeq123dv 7421 . . . . 5 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
4035, 39eqtrd 2766 . . . 4 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
41 eqid 2731 . . . . 5 (compf𝐷) = (compf𝐷)
42 eqid 2731 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
43 comfeq.2 . . . . 5 = (comp‘𝐷)
4441, 42, 11, 43comfffval 17601 . . . 4 (compf𝐷) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
4540, 44eqtr4di 2784 . . 3 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (compf𝐷))
4610, 45eqeq12d 2747 . 2 (𝜑 → ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ (compf𝐶) = (compf𝐷)))
47 ovex 7379 . . . . . 6 ((2nd𝑢)𝐻𝑧) ∈ V
48 fvex 6835 . . . . . 6 (𝐻𝑢) ∈ V
4947, 48mpoex 8011 . . . . 5 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V
5049rgen2w 3052 . . . 4 𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V
51 mpo2eqb 7478 . . . 4 (∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V → ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
5250, 51ax-mp 5 . . 3 ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
53 vex 3440 . . . . . . . . 9 𝑥 ∈ V
54 vex 3440 . . . . . . . . 9 𝑦 ∈ V
5553, 54op2ndd 7932 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (2nd𝑢) = 𝑦)
5655oveq1d 7361 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → ((2nd𝑢)𝐻𝑧) = (𝑦𝐻𝑧))
57 fveq2 6822 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝐻𝑢) = (𝐻‘⟨𝑥, 𝑦⟩))
58 df-ov 7349 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
5957, 58eqtr4di 2784 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝐻𝑢) = (𝑥𝐻𝑦))
60 oveq1 7353 . . . . . . . . . 10 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 · 𝑧) = (⟨𝑥, 𝑦· 𝑧))
6160oveqd 7363 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑔(𝑢 · 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))
62 oveq1 7353 . . . . . . . . . 10 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 𝑧) = (⟨𝑥, 𝑦 𝑧))
6362oveqd 7363 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑔(𝑢 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
6461, 63eqeq12d 2747 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
6559, 64raleqbidv 3312 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
6656, 65raleqbidv 3312 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
67 ovex 7379 . . . . . . . 8 (𝑔(𝑢 · 𝑧)𝑓) ∈ V
6867rgen2w 3052 . . . . . . 7 𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) ∈ V
69 mpo2eqb 7478 . . . . . . 7 (∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) ∈ V → ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓)))
7068, 69ax-mp 5 . . . . . 6 ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓))
71 ralcom 3260 . . . . . 6 (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7266, 70, 713bitr4g 314 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
7372ralbidv 3155 . . . 4 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
7473ralxp 5781 . . 3 (∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7552, 74bitri 275 . 2 ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7646, 75bitr3di 286 1 (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cop 4582   × cxp 5614  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  Hom chom 17169  compcco 17170  Homf chomf 17569  compfccomf 17570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-homf 17573  df-comf 17574
This theorem is referenced by:  comfeqd  17610  2oppccomf  17628  oppccomfpropd  17630  resssetc  17996  resscatc  18013  resccatlem  49104  fthcomf  49188  oppcthinco  49470  oppcthinendcALT  49472  termolmd  49701
  Copyright terms: Public domain W3C validator