MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeq Structured version   Visualization version   GIF version

Theorem comfeq 17674
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeq.1 · = (comp‘𝐶)
comfeq.2 = (comp‘𝐷)
comfeq.h 𝐻 = (Hom ‘𝐶)
comfeq.3 (𝜑𝐵 = (Base‘𝐶))
comfeq.4 (𝜑𝐵 = (Base‘𝐷))
comfeq.5 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
comfeq (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝐶,𝑓,𝑔,𝑧   𝜑,𝑓,𝑔,𝑧   · ,𝑓,𝑔,𝑥,𝑦   𝐷,𝑓,𝑔,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦   ,𝑓,𝑔,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   (𝑧)   · (𝑧)   𝐻(𝑧)

Proof of Theorem comfeq
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 comfeq.3 . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
21sqxpeqd 5673 . . . . 5 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)))
3 eqidd 2731 . . . . 5 (𝜑 → (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)))
42, 1, 3mpoeq123dv 7467 . . . 4 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))))
5 eqid 2730 . . . . 5 (compf𝐶) = (compf𝐶)
6 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 comfeq.h . . . . 5 𝐻 = (Hom ‘𝐶)
8 comfeq.1 . . . . 5 · = (comp‘𝐶)
95, 6, 7, 8comfffval 17666 . . . 4 (compf𝐶) = (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)))
104, 9eqtr4di 2783 . . 3 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (compf𝐶))
11 eqid 2730 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
12 comfeq.5 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
13123ad2ant1 1133 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (Homf𝐶) = (Homf𝐷))
14 xp2nd 8004 . . . . . . . . . 10 (𝑢 ∈ (𝐵 × 𝐵) → (2nd𝑢) ∈ 𝐵)
15143ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (2nd𝑢) ∈ 𝐵)
1613ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝐵 = (Base‘𝐶))
1715, 16eleqtrd 2831 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (2nd𝑢) ∈ (Base‘𝐶))
18 simp3 1138 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
1918, 16eleqtrd 2831 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ (Base‘𝐶))
206, 7, 11, 13, 17, 19homfeqval 17665 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((2nd𝑢)𝐻𝑧) = ((2nd𝑢)(Hom ‘𝐷)𝑧))
21 xp1st 8003 . . . . . . . . . . . 12 (𝑢 ∈ (𝐵 × 𝐵) → (1st𝑢) ∈ 𝐵)
22213ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (1st𝑢) ∈ 𝐵)
2322, 16eleqtrd 2831 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (1st𝑢) ∈ (Base‘𝐶))
246, 7, 11, 13, 23, 17homfeqval 17665 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((1st𝑢)𝐻(2nd𝑢)) = ((1st𝑢)(Hom ‘𝐷)(2nd𝑢)))
25 df-ov 7393 . . . . . . . . 9 ((1st𝑢)𝐻(2nd𝑢)) = (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩)
26 df-ov 7393 . . . . . . . . 9 ((1st𝑢)(Hom ‘𝐷)(2nd𝑢)) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩)
2724, 25, 263eqtr3g 2788 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩))
28 1st2nd2 8010 . . . . . . . . . 10 (𝑢 ∈ (𝐵 × 𝐵) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
29283ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
3029fveq2d 6865 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻𝑢) = (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩))
3129fveq2d 6865 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩))
3227, 30, 313eqtr4d 2775 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻𝑢) = ((Hom ‘𝐷)‘𝑢))
33 eqidd 2731 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝑔(𝑢 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓))
3420, 32, 33mpoeq123dv 7467 . . . . . 6 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
3534mpoeq3dva 7469 . . . . 5 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
36 comfeq.4 . . . . . . 7 (𝜑𝐵 = (Base‘𝐷))
3736sqxpeqd 5673 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐷) × (Base‘𝐷)))
38 eqidd 2731 . . . . . 6 (𝜑 → (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
3937, 36, 38mpoeq123dv 7467 . . . . 5 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
4035, 39eqtrd 2765 . . . 4 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
41 eqid 2730 . . . . 5 (compf𝐷) = (compf𝐷)
42 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
43 comfeq.2 . . . . 5 = (comp‘𝐷)
4441, 42, 11, 43comfffval 17666 . . . 4 (compf𝐷) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
4540, 44eqtr4di 2783 . . 3 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (compf𝐷))
4610, 45eqeq12d 2746 . 2 (𝜑 → ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ (compf𝐶) = (compf𝐷)))
47 ovex 7423 . . . . . 6 ((2nd𝑢)𝐻𝑧) ∈ V
48 fvex 6874 . . . . . 6 (𝐻𝑢) ∈ V
4947, 48mpoex 8061 . . . . 5 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V
5049rgen2w 3050 . . . 4 𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V
51 mpo2eqb 7524 . . . 4 (∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V → ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
5250, 51ax-mp 5 . . 3 ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
53 vex 3454 . . . . . . . . 9 𝑥 ∈ V
54 vex 3454 . . . . . . . . 9 𝑦 ∈ V
5553, 54op2ndd 7982 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (2nd𝑢) = 𝑦)
5655oveq1d 7405 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → ((2nd𝑢)𝐻𝑧) = (𝑦𝐻𝑧))
57 fveq2 6861 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝐻𝑢) = (𝐻‘⟨𝑥, 𝑦⟩))
58 df-ov 7393 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
5957, 58eqtr4di 2783 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝐻𝑢) = (𝑥𝐻𝑦))
60 oveq1 7397 . . . . . . . . . 10 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 · 𝑧) = (⟨𝑥, 𝑦· 𝑧))
6160oveqd 7407 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑔(𝑢 · 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))
62 oveq1 7397 . . . . . . . . . 10 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 𝑧) = (⟨𝑥, 𝑦 𝑧))
6362oveqd 7407 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑔(𝑢 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
6461, 63eqeq12d 2746 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
6559, 64raleqbidv 3321 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
6656, 65raleqbidv 3321 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
67 ovex 7423 . . . . . . . 8 (𝑔(𝑢 · 𝑧)𝑓) ∈ V
6867rgen2w 3050 . . . . . . 7 𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) ∈ V
69 mpo2eqb 7524 . . . . . . 7 (∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) ∈ V → ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓)))
7068, 69ax-mp 5 . . . . . 6 ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓))
71 ralcom 3266 . . . . . 6 (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7266, 70, 713bitr4g 314 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
7372ralbidv 3157 . . . 4 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
7473ralxp 5808 . . 3 (∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7552, 74bitri 275 . 2 ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
7646, 75bitr3di 286 1 (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cop 4598   × cxp 5639  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  compcco 17239  Homf chomf 17634  compfccomf 17635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-homf 17638  df-comf 17639
This theorem is referenced by:  comfeqd  17675  2oppccomf  17693  oppccomfpropd  17695  resssetc  18061  resscatc  18078  resccatlem  49066  fthcomf  49150  oppcthinco  49432  oppcthinendcALT  49434  termolmd  49663
  Copyright terms: Public domain W3C validator