MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeq Structured version   Visualization version   GIF version

Theorem comfeq 16837
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeq.1 · = (comp‘𝐶)
comfeq.2 = (comp‘𝐷)
comfeq.h 𝐻 = (Hom ‘𝐶)
comfeq.3 (𝜑𝐵 = (Base‘𝐶))
comfeq.4 (𝜑𝐵 = (Base‘𝐷))
comfeq.5 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
comfeq (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝐶,𝑓,𝑔,𝑧   𝜑,𝑓,𝑔,𝑧   · ,𝑓,𝑔,𝑥,𝑦   𝐷,𝑓,𝑔,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦   ,𝑓,𝑔,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   (𝑧)   · (𝑧)   𝐻(𝑧)

Proof of Theorem comfeq
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ovex 7010 . . . . . 6 ((2nd𝑢)𝐻𝑧) ∈ V
2 fvex 6514 . . . . . 6 (𝐻𝑢) ∈ V
31, 2mpoex 7587 . . . . 5 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V
43rgen2w 3101 . . . 4 𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V
5 mpo2eqb 7101 . . . 4 (∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) ∈ V → ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
64, 5ax-mp 5 . . 3 ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
7 vex 3418 . . . . . . . . 9 𝑥 ∈ V
8 vex 3418 . . . . . . . . 9 𝑦 ∈ V
97, 8op2ndd 7514 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (2nd𝑢) = 𝑦)
109oveq1d 6993 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → ((2nd𝑢)𝐻𝑧) = (𝑦𝐻𝑧))
11 fveq2 6501 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝐻𝑢) = (𝐻‘⟨𝑥, 𝑦⟩))
12 df-ov 6981 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
1311, 12syl6eqr 2832 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝐻𝑢) = (𝑥𝐻𝑦))
14 oveq1 6985 . . . . . . . . . 10 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 · 𝑧) = (⟨𝑥, 𝑦· 𝑧))
1514oveqd 6995 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑔(𝑢 · 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))
16 oveq1 6985 . . . . . . . . . 10 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 𝑧) = (⟨𝑥, 𝑦 𝑧))
1716oveqd 6995 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑔(𝑢 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
1815, 17eqeq12d 2793 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
1913, 18raleqbidv 3341 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
2010, 19raleqbidv 3341 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
21 ovex 7010 . . . . . . . 8 (𝑔(𝑢 · 𝑧)𝑓) ∈ V
2221rgen2w 3101 . . . . . . 7 𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) ∈ V
23 mpo2eqb 7101 . . . . . . 7 (∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) ∈ V → ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓)))
2422, 23ax-mp 5 . . . . . 6 ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑔 ∈ ((2nd𝑢)𝐻𝑧)∀𝑓 ∈ (𝐻𝑢)(𝑔(𝑢 · 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓))
25 ralcom 3295 . . . . . 6 (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)∀𝑓 ∈ (𝑥𝐻𝑦)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
2620, 24, 253bitr4g 306 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
2726ralbidv 3147 . . . 4 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
2827ralxp 5563 . . 3 (∀𝑢 ∈ (𝐵 × 𝐵)∀𝑧𝐵 (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
296, 28bitri 267 . 2 ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
30 comfeq.3 . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
3130sqxpeqd 5440 . . . . 5 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)))
32 eqidd 2779 . . . . 5 (𝜑 → (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)))
3331, 30, 32mpoeq123dv 7049 . . . 4 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))))
34 eqid 2778 . . . . 5 (compf𝐶) = (compf𝐶)
35 eqid 2778 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
36 comfeq.h . . . . 5 𝐻 = (Hom ‘𝐶)
37 comfeq.1 . . . . 5 · = (comp‘𝐶)
3834, 35, 36, 37comfffval 16829 . . . 4 (compf𝐶) = (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓)))
3933, 38syl6eqr 2832 . . 3 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (compf𝐶))
40 eqid 2778 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
41 comfeq.5 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
42413ad2ant1 1113 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (Homf𝐶) = (Homf𝐷))
43 xp2nd 7536 . . . . . . . . . 10 (𝑢 ∈ (𝐵 × 𝐵) → (2nd𝑢) ∈ 𝐵)
44433ad2ant2 1114 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (2nd𝑢) ∈ 𝐵)
45303ad2ant1 1113 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝐵 = (Base‘𝐶))
4644, 45eleqtrd 2868 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (2nd𝑢) ∈ (Base‘𝐶))
47 simp3 1118 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
4847, 45eleqtrd 2868 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ (Base‘𝐶))
4935, 36, 40, 42, 46, 48homfeqval 16828 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((2nd𝑢)𝐻𝑧) = ((2nd𝑢)(Hom ‘𝐷)𝑧))
50 xp1st 7535 . . . . . . . . . . . 12 (𝑢 ∈ (𝐵 × 𝐵) → (1st𝑢) ∈ 𝐵)
51503ad2ant2 1114 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (1st𝑢) ∈ 𝐵)
5251, 45eleqtrd 2868 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (1st𝑢) ∈ (Base‘𝐶))
5335, 36, 40, 42, 52, 46homfeqval 16828 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((1st𝑢)𝐻(2nd𝑢)) = ((1st𝑢)(Hom ‘𝐷)(2nd𝑢)))
54 df-ov 6981 . . . . . . . . 9 ((1st𝑢)𝐻(2nd𝑢)) = (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩)
55 df-ov 6981 . . . . . . . . 9 ((1st𝑢)(Hom ‘𝐷)(2nd𝑢)) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩)
5653, 54, 553eqtr3g 2837 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩))
57 1st2nd2 7542 . . . . . . . . . 10 (𝑢 ∈ (𝐵 × 𝐵) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
58573ad2ant2 1114 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
5958fveq2d 6505 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻𝑢) = (𝐻‘⟨(1st𝑢), (2nd𝑢)⟩))
6058fveq2d 6505 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘⟨(1st𝑢), (2nd𝑢)⟩))
6156, 59, 603eqtr4d 2824 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝐻𝑢) = ((Hom ‘𝐷)‘𝑢))
62 eqidd 2779 . . . . . . 7 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝑔(𝑢 𝑧)𝑓) = (𝑔(𝑢 𝑧)𝑓))
6349, 61, 62mpoeq123dv 7049 . . . . . 6 ((𝜑𝑢 ∈ (𝐵 × 𝐵) ∧ 𝑧𝐵) → (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
6463mpoeq3dva 7051 . . . . 5 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
65 comfeq.4 . . . . . . 7 (𝜑𝐵 = (Base‘𝐷))
6665sqxpeqd 5440 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐷) × (Base‘𝐷)))
67 eqidd 2779 . . . . . 6 (𝜑 → (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)) = (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
6866, 65, 67mpoeq123dv 7049 . . . . 5 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
6964, 68eqtrd 2814 . . . 4 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))))
70 eqid 2778 . . . . 5 (compf𝐷) = (compf𝐷)
71 eqid 2778 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
72 comfeq.2 . . . . 5 = (comp‘𝐷)
7370, 71, 40, 72comfffval 16829 . . . 4 (compf𝐷) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ ((2nd𝑢)(Hom ‘𝐷)𝑧), 𝑓 ∈ ((Hom ‘𝐷)‘𝑢) ↦ (𝑔(𝑢 𝑧)𝑓)))
7469, 73syl6eqr 2832 . . 3 (𝜑 → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) = (compf𝐷))
7539, 74eqeq12d 2793 . 2 (𝜑 → ((𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 · 𝑧)𝑓))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑢)𝐻𝑧), 𝑓 ∈ (𝐻𝑢) ↦ (𝑔(𝑢 𝑧)𝑓))) ↔ (compf𝐶) = (compf𝐷)))
7629, 75syl5rbbr 278 1 (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1068   = wceq 1507  wcel 2050  wral 3088  Vcvv 3415  cop 4448   × cxp 5406  cfv 6190  (class class class)co 6978  cmpo 6980  1st c1st 7501  2nd c2nd 7502  Basecbs 16342  Hom chom 16435  compcco 16436  Homf chomf 16798  compfccomf 16799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-ov 6981  df-oprab 6982  df-mpo 6983  df-1st 7503  df-2nd 7504  df-homf 16802  df-comf 16803
This theorem is referenced by:  comfeqd  16838  2oppccomf  16856  oppccomfpropd  16858  resssetc  17213  resscatc  17226
  Copyright terms: Public domain W3C validator