| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homfeq | Structured version Visualization version GIF version | ||
| Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| homfeq.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| homfeq.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| homfeq.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| homfeq.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| Ref | Expression |
|---|---|
| homfeq | ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | homfeq.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | homffval 17615 | . . . 4 ⊢ (Homf ‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦)) |
| 5 | homfeq.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 6 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (𝑥𝐻𝑦) = (𝑥𝐻𝑦)) | |
| 7 | 5, 5, 6 | mpoeq123dv 7428 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦))) |
| 8 | 4, 7 | eqtr4id 2783 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
| 9 | eqid 2729 | . . . . 5 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 11 | homfeq.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 12 | 9, 10, 11 | homffval 17615 | . . . 4 ⊢ (Homf ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦)) |
| 13 | homfeq.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) | |
| 14 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (𝑥𝐽𝑦) = (𝑥𝐽𝑦)) | |
| 15 | 13, 13, 14 | mpoeq123dv 7428 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦))) |
| 16 | 12, 15 | eqtr4id 2783 | . . 3 ⊢ (𝜑 → (Homf ‘𝐷) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦))) |
| 17 | 8, 16 | eqeq12d 2745 | . 2 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)))) |
| 18 | ovex 7386 | . . . 4 ⊢ (𝑥𝐻𝑦) ∈ V | |
| 19 | 18 | rgen2w 3049 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ V |
| 20 | mpo2eqb 7485 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ V → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) | |
| 21 | 19, 20 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)) |
| 22 | 17, 21 | bitrdi 287 | 1 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17139 Hom chom 17191 Homf chomf 17591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-homf 17595 |
| This theorem is referenced by: homfeqd 17620 fullresc 17777 resssetc 18018 resscatc 18035 funchomf 49102 initopropd 49248 termopropd 49249 termolmd 49675 |
| Copyright terms: Public domain | W3C validator |