MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeq Structured version   Visualization version   GIF version

Theorem homfeq 17739
Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
homfeq.h 𝐻 = (Hom ‘𝐶)
homfeq.j 𝐽 = (Hom ‘𝐷)
homfeq.1 (𝜑𝐵 = (Base‘𝐶))
homfeq.2 (𝜑𝐵 = (Base‘𝐷))
Assertion
Ref Expression
homfeq (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦   𝑥,𝐽,𝑦

Proof of Theorem homfeq
StepHypRef Expression
1 eqid 2735 . . . . 5 (Homf𝐶) = (Homf𝐶)
2 eqid 2735 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 homfeq.h . . . . 5 𝐻 = (Hom ‘𝐶)
41, 2, 3homffval 17735 . . . 4 (Homf𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦))
5 homfeq.1 . . . . 5 (𝜑𝐵 = (Base‘𝐶))
6 eqidd 2736 . . . . 5 (𝜑 → (𝑥𝐻𝑦) = (𝑥𝐻𝑦))
75, 5, 6mpoeq123dv 7508 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦)))
84, 7eqtr4id 2794 . . 3 (𝜑 → (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
9 eqid 2735 . . . . 5 (Homf𝐷) = (Homf𝐷)
10 eqid 2735 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
11 homfeq.j . . . . 5 𝐽 = (Hom ‘𝐷)
129, 10, 11homffval 17735 . . . 4 (Homf𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦))
13 homfeq.2 . . . . 5 (𝜑𝐵 = (Base‘𝐷))
14 eqidd 2736 . . . . 5 (𝜑 → (𝑥𝐽𝑦) = (𝑥𝐽𝑦))
1513, 13, 14mpoeq123dv 7508 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦)))
1612, 15eqtr4id 2794 . . 3 (𝜑 → (Homf𝐷) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)))
178, 16eqeq12d 2751 . 2 (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦))))
18 ovex 7464 . . . 4 (𝑥𝐻𝑦) ∈ V
1918rgen2w 3064 . . 3 𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ∈ V
20 mpo2eqb 7565 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ∈ V → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
2119, 20ax-mp 5 . 2 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))
2217, 21bitrdi 287 1 (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  Hom chom 17309  Homf chomf 17711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-homf 17715
This theorem is referenced by:  homfeqd  17740  fullresc  17902  resssetc  18146  resscatc  18163
  Copyright terms: Public domain W3C validator