MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeq Structured version   Visualization version   GIF version

Theorem homfeq 17608
Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
homfeq.h 𝐻 = (Hom ‘𝐶)
homfeq.j 𝐽 = (Hom ‘𝐷)
homfeq.1 (𝜑𝐵 = (Base‘𝐶))
homfeq.2 (𝜑𝐵 = (Base‘𝐷))
Assertion
Ref Expression
homfeq (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦   𝑥,𝐽,𝑦

Proof of Theorem homfeq
StepHypRef Expression
1 eqid 2733 . . . . 5 (Homf𝐶) = (Homf𝐶)
2 eqid 2733 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 homfeq.h . . . . 5 𝐻 = (Hom ‘𝐶)
41, 2, 3homffval 17604 . . . 4 (Homf𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦))
5 homfeq.1 . . . . 5 (𝜑𝐵 = (Base‘𝐶))
6 eqidd 2734 . . . . 5 (𝜑 → (𝑥𝐻𝑦) = (𝑥𝐻𝑦))
75, 5, 6mpoeq123dv 7430 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦)))
84, 7eqtr4id 2787 . . 3 (𝜑 → (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
9 eqid 2733 . . . . 5 (Homf𝐷) = (Homf𝐷)
10 eqid 2733 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
11 homfeq.j . . . . 5 𝐽 = (Hom ‘𝐷)
129, 10, 11homffval 17604 . . . 4 (Homf𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦))
13 homfeq.2 . . . . 5 (𝜑𝐵 = (Base‘𝐷))
14 eqidd 2734 . . . . 5 (𝜑 → (𝑥𝐽𝑦) = (𝑥𝐽𝑦))
1513, 13, 14mpoeq123dv 7430 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦)))
1612, 15eqtr4id 2787 . . 3 (𝜑 → (Homf𝐷) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)))
178, 16eqeq12d 2749 . 2 (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦))))
18 ovex 7388 . . . 4 (𝑥𝐻𝑦) ∈ V
1918rgen2w 3053 . . 3 𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ∈ V
20 mpo2eqb 7487 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ∈ V → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
2119, 20ax-mp 5 . 2 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))
2217, 21bitrdi 287 1 (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17127  Hom chom 17179  Homf chomf 17580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-homf 17584
This theorem is referenced by:  homfeqd  17609  fullresc  17766  resssetc  18007  resscatc  18024  funchomf  49258  initopropd  49404  termopropd  49405  termolmd  49831
  Copyright terms: Public domain W3C validator