MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeq Structured version   Visualization version   GIF version

Theorem homfeq 17477
Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
homfeq.h 𝐻 = (Hom ‘𝐶)
homfeq.j 𝐽 = (Hom ‘𝐷)
homfeq.1 (𝜑𝐵 = (Base‘𝐶))
homfeq.2 (𝜑𝐵 = (Base‘𝐷))
Assertion
Ref Expression
homfeq (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦   𝑥,𝐽,𝑦

Proof of Theorem homfeq
StepHypRef Expression
1 eqid 2736 . . . . 5 (Homf𝐶) = (Homf𝐶)
2 eqid 2736 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 homfeq.h . . . . 5 𝐻 = (Hom ‘𝐶)
41, 2, 3homffval 17473 . . . 4 (Homf𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦))
5 homfeq.1 . . . . 5 (𝜑𝐵 = (Base‘𝐶))
6 eqidd 2737 . . . . 5 (𝜑 → (𝑥𝐻𝑦) = (𝑥𝐻𝑦))
75, 5, 6mpoeq123dv 7391 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦)))
84, 7eqtr4id 2795 . . 3 (𝜑 → (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
9 eqid 2736 . . . . 5 (Homf𝐷) = (Homf𝐷)
10 eqid 2736 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
11 homfeq.j . . . . 5 𝐽 = (Hom ‘𝐷)
129, 10, 11homffval 17473 . . . 4 (Homf𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦))
13 homfeq.2 . . . . 5 (𝜑𝐵 = (Base‘𝐷))
14 eqidd 2737 . . . . 5 (𝜑 → (𝑥𝐽𝑦) = (𝑥𝐽𝑦))
1513, 13, 14mpoeq123dv 7391 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦)))
1612, 15eqtr4id 2795 . . 3 (𝜑 → (Homf𝐷) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)))
178, 16eqeq12d 2752 . 2 (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦))))
18 ovex 7349 . . . 4 (𝑥𝐻𝑦) ∈ V
1918rgen2w 3066 . . 3 𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ∈ V
20 mpo2eqb 7447 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ∈ V → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
2119, 20ax-mp 5 . 2 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))
2217, 21bitrdi 286 1 (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  wral 3061  Vcvv 3440  cfv 6465  (class class class)co 7316  cmpo 7318  Basecbs 16986  Hom chom 17047  Homf chomf 17449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-1st 7877  df-2nd 7878  df-homf 17453
This theorem is referenced by:  homfeqd  17478  fullresc  17640  resssetc  17881  resscatc  17898
  Copyright terms: Public domain W3C validator