MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeq Structured version   Visualization version   GIF version

Theorem homfeq 17752
Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
homfeq.h 𝐻 = (Hom ‘𝐶)
homfeq.j 𝐽 = (Hom ‘𝐷)
homfeq.1 (𝜑𝐵 = (Base‘𝐶))
homfeq.2 (𝜑𝐵 = (Base‘𝐷))
Assertion
Ref Expression
homfeq (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦   𝑥,𝐽,𝑦

Proof of Theorem homfeq
StepHypRef Expression
1 eqid 2740 . . . . 5 (Homf𝐶) = (Homf𝐶)
2 eqid 2740 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 homfeq.h . . . . 5 𝐻 = (Hom ‘𝐶)
41, 2, 3homffval 17748 . . . 4 (Homf𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦))
5 homfeq.1 . . . . 5 (𝜑𝐵 = (Base‘𝐶))
6 eqidd 2741 . . . . 5 (𝜑 → (𝑥𝐻𝑦) = (𝑥𝐻𝑦))
75, 5, 6mpoeq123dv 7525 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦)))
84, 7eqtr4id 2799 . . 3 (𝜑 → (Homf𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
9 eqid 2740 . . . . 5 (Homf𝐷) = (Homf𝐷)
10 eqid 2740 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
11 homfeq.j . . . . 5 𝐽 = (Hom ‘𝐷)
129, 10, 11homffval 17748 . . . 4 (Homf𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦))
13 homfeq.2 . . . . 5 (𝜑𝐵 = (Base‘𝐷))
14 eqidd 2741 . . . . 5 (𝜑 → (𝑥𝐽𝑦) = (𝑥𝐽𝑦))
1513, 13, 14mpoeq123dv 7525 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦)))
1612, 15eqtr4id 2799 . . 3 (𝜑 → (Homf𝐷) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)))
178, 16eqeq12d 2756 . 2 (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦))))
18 ovex 7481 . . . 4 (𝑥𝐻𝑦) ∈ V
1918rgen2w 3072 . . 3 𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ∈ V
20 mpo2eqb 7582 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ∈ V → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
2119, 20ax-mp 5 . 2 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))
2217, 21bitrdi 287 1 (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  Hom chom 17322  Homf chomf 17724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-homf 17728
This theorem is referenced by:  homfeqd  17753  fullresc  17915  resssetc  18159  resscatc  18176
  Copyright terms: Public domain W3C validator