| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homfeq | Structured version Visualization version GIF version | ||
| Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| homfeq.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| homfeq.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| homfeq.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| homfeq.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| Ref | Expression |
|---|---|
| homfeq | ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | homfeq.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | homffval 17627 | . . . 4 ⊢ (Homf ‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦)) |
| 5 | homfeq.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 6 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (𝑥𝐻𝑦) = (𝑥𝐻𝑦)) | |
| 7 | 5, 5, 6 | mpoeq123dv 7444 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦))) |
| 8 | 4, 7 | eqtr4id 2783 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
| 9 | eqid 2729 | . . . . 5 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 11 | homfeq.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 12 | 9, 10, 11 | homffval 17627 | . . . 4 ⊢ (Homf ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦)) |
| 13 | homfeq.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) | |
| 14 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (𝑥𝐽𝑦) = (𝑥𝐽𝑦)) | |
| 15 | 13, 13, 14 | mpoeq123dv 7444 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦))) |
| 16 | 12, 15 | eqtr4id 2783 | . . 3 ⊢ (𝜑 → (Homf ‘𝐷) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦))) |
| 17 | 8, 16 | eqeq12d 2745 | . 2 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)))) |
| 18 | ovex 7402 | . . . 4 ⊢ (𝑥𝐻𝑦) ∈ V | |
| 19 | 18 | rgen2w 3049 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ V |
| 20 | mpo2eqb 7501 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ V → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) | |
| 21 | 19, 20 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)) |
| 22 | 17, 21 | bitrdi 287 | 1 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 Basecbs 17155 Hom chom 17207 Homf chomf 17603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-homf 17607 |
| This theorem is referenced by: homfeqd 17632 fullresc 17789 resssetc 18030 resscatc 18047 funchomf 49059 initopropd 49205 termopropd 49206 termolmd 49632 |
| Copyright terms: Public domain | W3C validator |