| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homfeq | Structured version Visualization version GIF version | ||
| Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| homfeq.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| homfeq.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| homfeq.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| homfeq.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| Ref | Expression |
|---|---|
| homfeq | ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | homfeq.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | homffval 17591 | . . . 4 ⊢ (Homf ‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦)) |
| 5 | homfeq.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 6 | eqidd 2732 | . . . . 5 ⊢ (𝜑 → (𝑥𝐻𝑦) = (𝑥𝐻𝑦)) | |
| 7 | 5, 5, 6 | mpoeq123dv 7416 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦))) |
| 8 | 4, 7 | eqtr4id 2785 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
| 9 | eqid 2731 | . . . . 5 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
| 10 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 11 | homfeq.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 12 | 9, 10, 11 | homffval 17591 | . . . 4 ⊢ (Homf ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦)) |
| 13 | homfeq.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) | |
| 14 | eqidd 2732 | . . . . 5 ⊢ (𝜑 → (𝑥𝐽𝑦) = (𝑥𝐽𝑦)) | |
| 15 | 13, 13, 14 | mpoeq123dv 7416 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦))) |
| 16 | 12, 15 | eqtr4id 2785 | . . 3 ⊢ (𝜑 → (Homf ‘𝐷) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦))) |
| 17 | 8, 16 | eqeq12d 2747 | . 2 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)))) |
| 18 | ovex 7374 | . . . 4 ⊢ (𝑥𝐻𝑦) ∈ V | |
| 19 | 18 | rgen2w 3052 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ V |
| 20 | mpo2eqb 7473 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ V → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) | |
| 21 | 19, 20 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)) |
| 22 | 17, 21 | bitrdi 287 | 1 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 Basecbs 17115 Hom chom 17167 Homf chomf 17567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-homf 17571 |
| This theorem is referenced by: homfeqd 17596 fullresc 17753 resssetc 17994 resscatc 18011 funchomf 49129 initopropd 49275 termopropd 49276 termolmd 49702 |
| Copyright terms: Public domain | W3C validator |