![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homfeq | Structured version Visualization version GIF version |
Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
homfeq.h | ⊢ 𝐻 = (Hom ‘𝐶) |
homfeq.j | ⊢ 𝐽 = (Hom ‘𝐷) |
homfeq.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
homfeq.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
Ref | Expression |
---|---|
homfeq | ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
2 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | homfeq.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | homffval 17473 | . . . 4 ⊢ (Homf ‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦)) |
5 | homfeq.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
6 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → (𝑥𝐻𝑦) = (𝑥𝐻𝑦)) | |
7 | 5, 5, 6 | mpoeq123dv 7391 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦))) |
8 | 4, 7 | eqtr4id 2795 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
9 | eqid 2736 | . . . . 5 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
10 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
11 | homfeq.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
12 | 9, 10, 11 | homffval 17473 | . . . 4 ⊢ (Homf ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦)) |
13 | homfeq.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) | |
14 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → (𝑥𝐽𝑦) = (𝑥𝐽𝑦)) | |
15 | 13, 13, 14 | mpoeq123dv 7391 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦))) |
16 | 12, 15 | eqtr4id 2795 | . . 3 ⊢ (𝜑 → (Homf ‘𝐷) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦))) |
17 | 8, 16 | eqeq12d 2752 | . 2 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)))) |
18 | ovex 7349 | . . . 4 ⊢ (𝑥𝐻𝑦) ∈ V | |
19 | 18 | rgen2w 3066 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ V |
20 | mpo2eqb 7447 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ V → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) | |
21 | 19, 20 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)) |
22 | 17, 21 | bitrdi 286 | 1 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∀wral 3061 Vcvv 3440 ‘cfv 6465 (class class class)co 7316 ∈ cmpo 7318 Basecbs 16986 Hom chom 17047 Homf chomf 17449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-1st 7877 df-2nd 7878 df-homf 17453 |
This theorem is referenced by: homfeqd 17478 fullresc 17640 resssetc 17881 resscatc 17898 |
Copyright terms: Public domain | W3C validator |