![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homfeq | Structured version Visualization version GIF version |
Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
homfeq.h | ⊢ 𝐻 = (Hom ‘𝐶) |
homfeq.j | ⊢ 𝐽 = (Hom ‘𝐷) |
homfeq.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
homfeq.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
Ref | Expression |
---|---|
homfeq | ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
2 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | homfeq.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | homffval 17748 | . . . 4 ⊢ (Homf ‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦)) |
5 | homfeq.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
6 | eqidd 2741 | . . . . 5 ⊢ (𝜑 → (𝑥𝐻𝑦) = (𝑥𝐻𝑦)) | |
7 | 5, 5, 6 | mpoeq123dv 7525 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥𝐻𝑦))) |
8 | 4, 7 | eqtr4id 2799 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
9 | eqid 2740 | . . . . 5 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
10 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
11 | homfeq.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
12 | 9, 10, 11 | homffval 17748 | . . . 4 ⊢ (Homf ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦)) |
13 | homfeq.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) | |
14 | eqidd 2741 | . . . . 5 ⊢ (𝜑 → (𝑥𝐽𝑦) = (𝑥𝐽𝑦)) | |
15 | 13, 13, 14 | mpoeq123dv 7525 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐽𝑦))) |
16 | 12, 15 | eqtr4id 2799 | . . 3 ⊢ (𝜑 → (Homf ‘𝐷) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦))) |
17 | 8, 16 | eqeq12d 2756 | . 2 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)))) |
18 | ovex 7481 | . . . 4 ⊢ (𝑥𝐻𝑦) ∈ V | |
19 | 18 | rgen2w 3072 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ V |
20 | mpo2eqb 7582 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ V → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) | |
21 | 19, 20 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐽𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)) |
22 | 17, 21 | bitrdi 287 | 1 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Basecbs 17258 Hom chom 17322 Homf chomf 17724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-homf 17728 |
This theorem is referenced by: homfeqd 17753 fullresc 17915 resssetc 18159 resscatc 18176 |
Copyright terms: Public domain | W3C validator |