MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnov Structured version   Visualization version   GIF version

Theorem fnov 7484
Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnov (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem fnov
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6885 . 2 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)))
2 fveq2 6826 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7356 . . . . 5 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2782 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝑥𝐹𝑦))
54mpompt 7467 . . 3 (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦))
65eqeq2i 2742 . 2 (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
71, 6bitri 275 1 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cop 4585  cmpt 5176   × cxp 5621   Fn wfn 6481  cfv 6486  (class class class)co 7353  cmpo 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358
This theorem is referenced by:  mapxpen  9067  dfioo2  13371  fnhomeqhomf  17615  reschomf  17756  cofulid  17815  cofurid  17816  prf1st  18128  prf2nd  18129  1st2ndprf  18130  curfuncf  18162  curf2ndf  18171  plusfeq  18540  scafeq  20803  cnfldadd  21285  cnfldmul  21287  dfcnfldOLD  21295  cnfldsub  21322  ipfeq  21575  psrvscafval  21873  mdetunilem7  22521  madurid  22547  cnmpt22f  23578  cnmptcom  23581  xkocnv  23717  qustgplem  24024  stdbdxmet  24419  iimulcnOLD  24851  rrxds  25309  rrxmfval  25322  cnnvm  30644  ofpreima  32622  ressplusf  32918  elrgspnlem2  33193  fedgmullem2  33602  matmpo  33769  mndpluscn  33892  raddcn  33895  txsconnlem  35212  cvmlift2lem6  35280  cvmlift2lem7  35281  cvmlift2lem12  35286  unccur  37582  matunitlindflem1  37595  rngchomrnghmresALTV  48251  2arymaptfo  48627  isofval2  49005  funcf2lem2  49055  upeu4  49169  diag1  49277  fucofulem2  49284
  Copyright terms: Public domain W3C validator