![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnov | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6501 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧))) | |
2 | fveq2 6446 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
3 | df-ov 6925 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
4 | 2, 3 | syl6eqr 2832 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
5 | 4 | mpt2mpt 7029 | . . 3 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦)) |
6 | 5 | eqeq2i 2790 | . 2 ⊢ (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
7 | 1, 6 | bitri 267 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1601 〈cop 4404 ↦ cmpt 4965 × cxp 5353 Fn wfn 6130 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fn 6138 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 |
This theorem is referenced by: mapxpen 8414 dfioo2 12587 fnhomeqhomf 16736 reschomf 16876 cofulid 16935 cofurid 16936 prf1st 17230 prf2nd 17231 1st2ndprf 17232 curfuncf 17264 curf2ndf 17273 plusfeq 17635 scafeq 19275 psrvscafval 19787 cnfldsub 20170 ipfeq 20393 mdetunilem7 20829 madurid 20855 cnmpt22f 21887 cnmptcom 21890 xkocnv 22026 qustgplem 22332 stdbdxmet 22728 iimulcn 23145 rrxds 23599 rrxmfval 23612 cnnvm 28109 ofpreima 30030 ressplusf 30212 matmpt2 30467 mndpluscn 30570 rmulccn 30572 raddcn 30573 txsconnlem 31821 cvmlift2lem6 31889 cvmlift2lem7 31890 cvmlift2lem12 31895 unccur 34017 matunitlindflem1 34031 rngchomrnghmresALTV 43011 |
Copyright terms: Public domain | W3C validator |