![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnov | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6950 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧))) | |
2 | fveq2 6891 | . . . . 5 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝐹‘⟨𝑥, 𝑦⟩)) | |
3 | df-ov 7414 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
4 | 2, 3 | eqtr4di 2790 | . . . 4 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
5 | 4 | mpompt 7524 | . . 3 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦)) |
6 | 5 | eqeq2i 2745 | . 2 ⊢ (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
7 | 1, 6 | bitri 274 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ⟨cop 4634 ↦ cmpt 5231 × cxp 5674 Fn wfn 6538 ‘cfv 6543 (class class class)co 7411 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 |
This theorem is referenced by: mapxpen 9145 dfioo2 13429 fnhomeqhomf 17637 reschomf 17781 cofulid 17842 cofurid 17843 prf1st 18158 prf2nd 18159 1st2ndprf 18160 curfuncf 18193 curf2ndf 18202 plusfeq 18571 scafeq 20497 cnfldsub 20979 ipfeq 21209 psrvscafval 21515 mdetunilem7 22127 madurid 22153 cnmpt22f 23186 cnmptcom 23189 xkocnv 23325 qustgplem 23632 stdbdxmet 24031 iimulcn 24461 rrxds 24917 rrxmfval 24930 cnnvm 29973 ofpreima 31928 ressplusf 32165 fedgmullem2 32774 matmpo 32852 mndpluscn 32975 rmulccn 32977 raddcn 32978 txsconnlem 34300 cvmlift2lem6 34368 cvmlift2lem7 34369 cvmlift2lem12 34374 gg-dfcnfld 35262 unccur 36563 matunitlindflem1 36576 rngchomrnghmresALTV 46979 2arymaptfo 47424 |
Copyright terms: Public domain | W3C validator |