![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnov | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6947 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧))) | |
2 | fveq2 6888 | . . . . 5 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝐹‘⟨𝑥, 𝑦⟩)) | |
3 | df-ov 7408 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
4 | 2, 3 | eqtr4di 2790 | . . . 4 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
5 | 4 | mpompt 7518 | . . 3 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦)) |
6 | 5 | eqeq2i 2745 | . 2 ⊢ (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
7 | 1, 6 | bitri 274 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ⟨cop 4633 ↦ cmpt 5230 × cxp 5673 Fn wfn 6535 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fn 6543 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 |
This theorem is referenced by: mapxpen 9139 dfioo2 13423 fnhomeqhomf 17631 reschomf 17775 cofulid 17836 cofurid 17837 prf1st 18152 prf2nd 18153 1st2ndprf 18154 curfuncf 18187 curf2ndf 18196 plusfeq 18565 scafeq 20484 cnfldsub 20965 ipfeq 21194 psrvscafval 21500 mdetunilem7 22111 madurid 22137 cnmpt22f 23170 cnmptcom 23173 xkocnv 23309 qustgplem 23616 stdbdxmet 24015 iimulcn 24445 rrxds 24901 rrxmfval 24914 cnnvm 29922 ofpreima 31877 ressplusf 32114 fedgmullem2 32703 matmpo 32771 mndpluscn 32894 rmulccn 32896 raddcn 32897 txsconnlem 34219 cvmlift2lem6 34287 cvmlift2lem7 34288 cvmlift2lem12 34293 unccur 36459 matunitlindflem1 36472 rngchomrnghmresALTV 46847 2arymaptfo 47293 |
Copyright terms: Public domain | W3C validator |