| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnov | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6886 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧))) | |
| 2 | fveq2 6828 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | df-ov 7355 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
| 5 | 4 | mpompt 7466 | . . 3 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦)) |
| 6 | 5 | eqeq2i 2746 | . 2 ⊢ (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 〈cop 4581 ↦ cmpt 5174 × cxp 5617 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 |
| This theorem is referenced by: mapxpen 9063 dfioo2 13352 fnhomeqhomf 17599 reschomf 17740 cofulid 17799 cofurid 17800 prf1st 18112 prf2nd 18113 1st2ndprf 18114 curfuncf 18146 curf2ndf 18155 plusfeq 18558 scafeq 20817 cnfldadd 21299 cnfldmul 21301 dfcnfldOLD 21309 cnfldsub 21336 ipfeq 21589 psrvscafval 21887 mdetunilem7 22534 madurid 22560 cnmpt22f 23591 cnmptcom 23594 xkocnv 23730 qustgplem 24037 stdbdxmet 24431 iimulcnOLD 24863 rrxds 25321 rrxmfval 25334 cnnvm 30664 ofpreima 32649 ressplusf 32951 elrgspnlem2 33217 fedgmullem2 33664 matmpo 33837 mndpluscn 33960 raddcn 33963 txsconnlem 35305 cvmlift2lem6 35373 cvmlift2lem7 35374 cvmlift2lem12 35379 unccur 37663 matunitlindflem1 37676 rngchomrnghmresALTV 48403 2arymaptfo 48779 isofval2 49157 funcf2lem2 49207 upeu4 49321 diag1 49429 fucofulem2 49436 |
| Copyright terms: Public domain | W3C validator |