MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnov Structured version   Visualization version   GIF version

Theorem fnov 7538
Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnov (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem fnov
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6937 . 2 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)))
2 fveq2 6876 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7408 . . . . 5 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2788 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝑥𝐹𝑦))
54mpompt 7521 . . 3 (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦))
65eqeq2i 2748 . 2 (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
71, 6bitri 275 1 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cop 4607  cmpt 5201   × cxp 5652   Fn wfn 6526  cfv 6531  (class class class)co 7405  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410
This theorem is referenced by:  mapxpen  9157  dfioo2  13467  fnhomeqhomf  17703  reschomf  17844  cofulid  17903  cofurid  17904  prf1st  18216  prf2nd  18217  1st2ndprf  18218  curfuncf  18250  curf2ndf  18259  plusfeq  18626  scafeq  20839  cnfldadd  21321  cnfldmul  21323  dfcnfldOLD  21331  cnfldsub  21360  ipfeq  21610  psrvscafval  21908  mdetunilem7  22556  madurid  22582  cnmpt22f  23613  cnmptcom  23616  xkocnv  23752  qustgplem  24059  stdbdxmet  24454  iimulcnOLD  24886  rrxds  25345  rrxmfval  25358  cnnvm  30663  ofpreima  32643  ressplusf  32939  elrgspnlem2  33238  fedgmullem2  33670  matmpo  33834  mndpluscn  33957  raddcn  33960  txsconnlem  35262  cvmlift2lem6  35330  cvmlift2lem7  35331  cvmlift2lem12  35336  unccur  37627  matunitlindflem1  37640  rngchomrnghmresALTV  48254  2arymaptfo  48634  isofval2  49002  funcf2lem2  49047  upeu4  49129  diag1  49215  fucofulem2  49222
  Copyright terms: Public domain W3C validator