| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnov | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6922 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧))) | |
| 2 | fveq2 6861 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | df-ov 7393 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
| 5 | 4 | mpompt 7506 | . . 3 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦)) |
| 6 | 5 | eqeq2i 2743 | . 2 ⊢ (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 〈cop 4598 ↦ cmpt 5191 × cxp 5639 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: mapxpen 9113 dfioo2 13418 fnhomeqhomf 17659 reschomf 17800 cofulid 17859 cofurid 17860 prf1st 18172 prf2nd 18173 1st2ndprf 18174 curfuncf 18206 curf2ndf 18215 plusfeq 18582 scafeq 20795 cnfldadd 21277 cnfldmul 21279 dfcnfldOLD 21287 cnfldsub 21316 ipfeq 21566 psrvscafval 21864 mdetunilem7 22512 madurid 22538 cnmpt22f 23569 cnmptcom 23572 xkocnv 23708 qustgplem 24015 stdbdxmet 24410 iimulcnOLD 24842 rrxds 25300 rrxmfval 25313 cnnvm 30618 ofpreima 32596 ressplusf 32892 elrgspnlem2 33201 fedgmullem2 33633 matmpo 33800 mndpluscn 33923 raddcn 33926 txsconnlem 35234 cvmlift2lem6 35302 cvmlift2lem7 35303 cvmlift2lem12 35308 unccur 37604 matunitlindflem1 37617 rngchomrnghmresALTV 48271 2arymaptfo 48647 isofval2 49025 funcf2lem2 49075 upeu4 49189 diag1 49297 fucofulem2 49304 |
| Copyright terms: Public domain | W3C validator |