| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnov | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6919 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧))) | |
| 2 | fveq2 6858 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | df-ov 7390 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
| 5 | 4 | mpompt 7503 | . . 3 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦)) |
| 6 | 5 | eqeq2i 2742 | . 2 ⊢ (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 〈cop 4595 ↦ cmpt 5188 × cxp 5636 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: mapxpen 9107 dfioo2 13411 fnhomeqhomf 17652 reschomf 17793 cofulid 17852 cofurid 17853 prf1st 18165 prf2nd 18166 1st2ndprf 18167 curfuncf 18199 curf2ndf 18208 plusfeq 18575 scafeq 20788 cnfldadd 21270 cnfldmul 21272 dfcnfldOLD 21280 cnfldsub 21309 ipfeq 21559 psrvscafval 21857 mdetunilem7 22505 madurid 22531 cnmpt22f 23562 cnmptcom 23565 xkocnv 23701 qustgplem 24008 stdbdxmet 24403 iimulcnOLD 24835 rrxds 25293 rrxmfval 25306 cnnvm 30611 ofpreima 32589 ressplusf 32885 elrgspnlem2 33194 fedgmullem2 33626 matmpo 33793 mndpluscn 33916 raddcn 33919 txsconnlem 35227 cvmlift2lem6 35295 cvmlift2lem7 35296 cvmlift2lem12 35301 unccur 37597 matunitlindflem1 37610 rngchomrnghmresALTV 48267 2arymaptfo 48643 isofval2 49021 funcf2lem2 49071 upeu4 49185 diag1 49293 fucofulem2 49300 |
| Copyright terms: Public domain | W3C validator |