MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnov Structured version   Visualization version   GIF version

Theorem fnov 7542
Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnov (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem fnov
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6950 . 2 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)))
2 fveq2 6891 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7414 . . . . 5 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2790 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝑥𝐹𝑦))
54mpompt 7524 . . 3 (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦))
65eqeq2i 2745 . 2 (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
71, 6bitri 274 1 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  cop 4634  cmpt 5231   × cxp 5674   Fn wfn 6538  cfv 6543  (class class class)co 7411  cmpo 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416
This theorem is referenced by:  mapxpen  9145  dfioo2  13429  fnhomeqhomf  17637  reschomf  17781  cofulid  17842  cofurid  17843  prf1st  18158  prf2nd  18159  1st2ndprf  18160  curfuncf  18193  curf2ndf  18202  plusfeq  18571  scafeq  20497  cnfldsub  20979  ipfeq  21209  psrvscafval  21515  mdetunilem7  22127  madurid  22153  cnmpt22f  23186  cnmptcom  23189  xkocnv  23325  qustgplem  23632  stdbdxmet  24031  iimulcn  24461  rrxds  24917  rrxmfval  24930  cnnvm  29973  ofpreima  31928  ressplusf  32165  fedgmullem2  32774  matmpo  32852  mndpluscn  32975  rmulccn  32977  raddcn  32978  txsconnlem  34300  cvmlift2lem6  34368  cvmlift2lem7  34369  cvmlift2lem12  34374  gg-dfcnfld  35262  unccur  36563  matunitlindflem1  36576  rngchomrnghmresALTV  46979  2arymaptfo  47424
  Copyright terms: Public domain W3C validator