| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnov | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6880 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧))) | |
| 2 | fveq2 6822 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | df-ov 7349 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2784 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
| 5 | 4 | mpompt 7460 | . . 3 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦)) |
| 6 | 5 | eqeq2i 2744 | . 2 ⊢ (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 〈cop 4582 ↦ cmpt 5172 × cxp 5614 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: mapxpen 9056 dfioo2 13347 fnhomeqhomf 17594 reschomf 17735 cofulid 17794 cofurid 17795 prf1st 18107 prf2nd 18108 1st2ndprf 18109 curfuncf 18141 curf2ndf 18150 plusfeq 18553 scafeq 20813 cnfldadd 21295 cnfldmul 21297 dfcnfldOLD 21305 cnfldsub 21332 ipfeq 21585 psrvscafval 21883 mdetunilem7 22531 madurid 22557 cnmpt22f 23588 cnmptcom 23591 xkocnv 23727 qustgplem 24034 stdbdxmet 24428 iimulcnOLD 24860 rrxds 25318 rrxmfval 25331 cnnvm 30657 ofpreima 32642 ressplusf 32939 elrgspnlem2 33205 fedgmullem2 33638 matmpo 33811 mndpluscn 33934 raddcn 33937 txsconnlem 35272 cvmlift2lem6 35340 cvmlift2lem7 35341 cvmlift2lem12 35346 unccur 37642 matunitlindflem1 37655 rngchomrnghmresALTV 48309 2arymaptfo 48685 isofval2 49063 funcf2lem2 49113 upeu4 49227 diag1 49335 fucofulem2 49342 |
| Copyright terms: Public domain | W3C validator |