Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubvrs Structured version   Visualization version   GIF version

Theorem msubvrs 32809
Description: The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubvrs.s 𝑆 = (mSubst‘𝑇)
msubvrs.e 𝐸 = (mEx‘𝑇)
msubvrs.v 𝑉 = (mVars‘𝑇)
msubvrs.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
msubvrs ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆𝑋𝐸) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐹   𝑥,𝑇   𝑥,𝑋   𝑥,𝑉
Allowed substitution hints:   𝑆(𝑥)   𝐻(𝑥)

Proof of Theorem msubvrs
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubvrs.e . . . . . 6 𝐸 = (mEx‘𝑇)
2 eqid 2823 . . . . . 6 (mRSubst‘𝑇) = (mRSubst‘𝑇)
3 msubvrs.s . . . . . 6 𝑆 = (mSubst‘𝑇)
41, 2, 3elmsubrn 32777 . . . . 5 ran 𝑆 = ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
54eleq2i 2906 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
6 eqid 2823 . . . . 5 (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
71fvexi 6686 . . . . . 6 𝐸 ∈ V
87mptex 6988 . . . . 5 (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) ∈ V
96, 8elrnmpti 5834 . . . 4 (𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
105, 9bitri 277 . . 3 (𝐹 ∈ ran 𝑆 ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
11 simp2 1133 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑓 ∈ ran (mRSubst‘𝑇))
12 simp3 1134 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑋𝐸)
13 eqid 2823 . . . . . . . . . . . 12 (mTC‘𝑇) = (mTC‘𝑇)
14 eqid 2823 . . . . . . . . . . . 12 (mREx‘𝑇) = (mREx‘𝑇)
1513, 1, 14mexval 32751 . . . . . . . . . . 11 𝐸 = ((mTC‘𝑇) × (mREx‘𝑇))
1612, 15eleqtrdi 2925 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
17 xp2nd 7724 . . . . . . . . . 10 (𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (2nd𝑋) ∈ (mREx‘𝑇))
1816, 17syl 17 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd𝑋) ∈ (mREx‘𝑇))
19 eqid 2823 . . . . . . . . . 10 (mVR‘𝑇) = (mVR‘𝑇)
202, 19, 14mrsubvrs 32771 . . . . . . . . 9 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ (2nd𝑋) ∈ (mREx‘𝑇)) → (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
2111, 18, 20syl2anc 586 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
22 fveq2 6672 . . . . . . . . . . . . 13 (𝑒 = 𝑋 → (1st𝑒) = (1st𝑋))
23 2fveq3 6677 . . . . . . . . . . . . 13 (𝑒 = 𝑋 → (𝑓‘(2nd𝑒)) = (𝑓‘(2nd𝑋)))
2422, 23opeq12d 4813 . . . . . . . . . . . 12 (𝑒 = 𝑋 → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
25 eqid 2823 . . . . . . . . . . . 12 (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)
26 opex 5358 . . . . . . . . . . . 12 ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ ∈ V
2724, 25, 26fvmpt3i 6775 . . . . . . . . . . 11 (𝑋𝐸 → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋) = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
2812, 27syl 17 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋) = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
2928fveq2d 6676 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩))
30 xp1st 7723 . . . . . . . . . . . . 13 (𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (1st𝑋) ∈ (mTC‘𝑇))
3116, 30syl 17 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (1st𝑋) ∈ (mTC‘𝑇))
322, 14mrsubf 32766 . . . . . . . . . . . . . 14 (𝑓 ∈ ran (mRSubst‘𝑇) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
3311, 32syl 17 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
3417, 15eleq2s 2933 . . . . . . . . . . . . . 14 (𝑋𝐸 → (2nd𝑋) ∈ (mREx‘𝑇))
3512, 34syl 17 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd𝑋) ∈ (mREx‘𝑇))
3633, 35ffvelrnd 6854 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑓‘(2nd𝑋)) ∈ (mREx‘𝑇))
37 opelxpi 5594 . . . . . . . . . . . 12 (((1st𝑋) ∈ (mTC‘𝑇) ∧ (𝑓‘(2nd𝑋)) ∈ (mREx‘𝑇)) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3831, 36, 37syl2anc 586 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3938, 15eleqtrrdi 2926 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ 𝐸)
40 msubvrs.v . . . . . . . . . . 11 𝑉 = (mVars‘𝑇)
4119, 1, 40mvrsval 32754 . . . . . . . . . 10 (⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ 𝐸 → (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)))
4239, 41syl 17 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)))
43 fvex 6685 . . . . . . . . . . . . 13 (1st𝑋) ∈ V
44 fvex 6685 . . . . . . . . . . . . 13 (𝑓‘(2nd𝑋)) ∈ V
4543, 44op2nd 7700 . . . . . . . . . . . 12 (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (𝑓‘(2nd𝑋))
4645a1i 11 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (𝑓‘(2nd𝑋)))
4746rneqd 5810 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = ran (𝑓‘(2nd𝑋)))
4847ineq1d 4190 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)) = (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)))
4929, 42, 483eqtrd 2862 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)))
5019, 1, 40mvrsval 32754 . . . . . . . . . . 11 (𝑋𝐸 → (𝑉𝑋) = (ran (2nd𝑋) ∩ (mVR‘𝑇)))
5112, 50syl 17 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉𝑋) = (ran (2nd𝑋) ∩ (mVR‘𝑇)))
5251iuneq1d 4948 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
53 msubvrs.h . . . . . . . . . . . . . . . . 17 𝐻 = (mVH‘𝑇)
5419, 1, 53mvhf 32807 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → 𝐻:(mVR‘𝑇)⟶𝐸)
55543ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝐻:(mVR‘𝑇)⟶𝐸)
56 inss2 4208 . . . . . . . . . . . . . . . 16 (ran (2nd𝑋) ∩ (mVR‘𝑇)) ⊆ (mVR‘𝑇)
5756sseli 3965 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇)) → 𝑥 ∈ (mVR‘𝑇))
58 ffvelrn 6851 . . . . . . . . . . . . . . 15 ((𝐻:(mVR‘𝑇)⟶𝐸𝑥 ∈ (mVR‘𝑇)) → (𝐻𝑥) ∈ 𝐸)
5955, 57, 58syl2an 597 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝐻𝑥) ∈ 𝐸)
60 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐻𝑥) → (1st𝑒) = (1st ‘(𝐻𝑥)))
61 2fveq3 6677 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐻𝑥) → (𝑓‘(2nd𝑒)) = (𝑓‘(2nd ‘(𝐻𝑥))))
6260, 61opeq12d 4813 . . . . . . . . . . . . . . 15 (𝑒 = (𝐻𝑥) → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6362, 25, 26fvmpt3i 6775 . . . . . . . . . . . . . 14 ((𝐻𝑥) ∈ 𝐸 → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6459, 63syl 17 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6557adantl 484 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑥 ∈ (mVR‘𝑇))
66 eqid 2823 . . . . . . . . . . . . . . . . 17 (mType‘𝑇) = (mType‘𝑇)
6719, 66, 53mvhval 32783 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (mVR‘𝑇) → (𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩)
6865, 67syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩)
69 fvex 6685 . . . . . . . . . . . . . . . 16 ((mType‘𝑇)‘𝑥) ∈ V
70 s1cli 13961 . . . . . . . . . . . . . . . . 17 ⟨“𝑥”⟩ ∈ Word V
7170elexi 3515 . . . . . . . . . . . . . . . 16 ⟨“𝑥”⟩ ∈ V
7269, 71op1std 7701 . . . . . . . . . . . . . . 15 ((𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩ → (1st ‘(𝐻𝑥)) = ((mType‘𝑇)‘𝑥))
7368, 72syl 17 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (1st ‘(𝐻𝑥)) = ((mType‘𝑇)‘𝑥))
7469, 71op2ndd 7702 . . . . . . . . . . . . . . . 16 ((𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩ → (2nd ‘(𝐻𝑥)) = ⟨“𝑥”⟩)
7568, 74syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (2nd ‘(𝐻𝑥)) = ⟨“𝑥”⟩)
7675fveq2d 6676 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑓‘(2nd ‘(𝐻𝑥))) = (𝑓‘⟨“𝑥”⟩))
7773, 76opeq12d 4813 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩ = ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩)
7864, 77eqtrd 2858 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩)
7978fveq2d 6676 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩))
80 simpl1 1187 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑇 ∈ mFS)
8119, 13, 66mtyf2 32800 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇))
8280, 81syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇))
8382, 65ffvelrnd 6854 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((mType‘𝑇)‘𝑥) ∈ (mTC‘𝑇))
8433adantr 483 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
85 elun2 4155 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (mVR‘𝑇) → 𝑥 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
8665, 85syl 17 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑥 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
8786s1cld 13959 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨“𝑥”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
88 eqid 2823 . . . . . . . . . . . . . . . . . 18 (mCN‘𝑇) = (mCN‘𝑇)
8988, 19, 14mrexval 32750 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ mFS → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
9080, 89syl 17 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
9187, 90eleqtrrd 2918 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨“𝑥”⟩ ∈ (mREx‘𝑇))
9284, 91ffvelrnd 6854 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑓‘⟨“𝑥”⟩) ∈ (mREx‘𝑇))
93 opelxpi 5594 . . . . . . . . . . . . . 14 ((((mType‘𝑇)‘𝑥) ∈ (mTC‘𝑇) ∧ (𝑓‘⟨“𝑥”⟩) ∈ (mREx‘𝑇)) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
9483, 92, 93syl2anc 586 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
9594, 15eleqtrrdi 2926 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ 𝐸)
9619, 1, 40mvrsval 32754 . . . . . . . . . . . 12 (⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ 𝐸 → (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)))
9795, 96syl 17 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)))
98 fvex 6685 . . . . . . . . . . . . . . 15 (𝑓‘⟨“𝑥”⟩) ∈ V
9969, 98op2nd 7700 . . . . . . . . . . . . . 14 (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (𝑓‘⟨“𝑥”⟩)
10099a1i 11 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (𝑓‘⟨“𝑥”⟩))
101100rneqd 5810 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = ran (𝑓‘⟨“𝑥”⟩))
102101ineq1d 4190 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)) = (ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10379, 97, 1023eqtrd 2862 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = (ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
104103iuneq2dv 4945 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10552, 104eqtrd 2858 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10621, 49, 1053eqtr4d 2868 . . . . . . 7 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
107 fveq1 6671 . . . . . . . . 9 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝐹𝑋) = ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋))
108107fveq2d 6676 . . . . . . . 8 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)))
109 fveq1 6671 . . . . . . . . . 10 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝐹‘(𝐻𝑥)) = ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)))
110109fveq2d 6676 . . . . . . . . 9 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹‘(𝐻𝑥))) = (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
111110iuneq2d 4950 . . . . . . . 8 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
112108, 111eqeq12d 2839 . . . . . . 7 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → ((𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))) ↔ (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)))))
113106, 112syl5ibrcom 249 . . . . . 6 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥)))))
1141133expia 1117 . . . . 5 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇)) → (𝑋𝐸 → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
115114com23 86 . . . 4 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇)) → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
116115rexlimdva 3286 . . 3 (𝑇 ∈ mFS → (∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
11710, 116syl5bi 244 . 2 (𝑇 ∈ mFS → (𝐹 ∈ ran 𝑆 → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
1181173imp 1107 1 ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆𝑋𝐸) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496  cun 3936  cin 3937  cop 4575   ciun 4921  cmpt 5148   × cxp 5555  ran crn 5558  wf 6353  cfv 6357  1st c1st 7689  2nd c2nd 7690  Word cword 13864  ⟨“cs1 13951  mCNcmcn 32709  mVRcmvar 32710  mTypecmty 32711  mTCcmtc 32713  mRExcmrex 32715  mExcmex 32716  mVarscmvrs 32718  mRSubstcmrsub 32719  mSubstcmsub 32720  mVHcmvh 32721  mFScmfs 32725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-word 13865  df-lsw 13917  df-concat 13925  df-s1 13952  df-substr 14005  df-pfx 14035  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-gsum 16718  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-frmd 18016  df-mrex 32735  df-mex 32736  df-mvrs 32738  df-mrsub 32739  df-msub 32740  df-mvh 32741  df-mfs 32745
This theorem is referenced by:  mclsppslem  32832
  Copyright terms: Public domain W3C validator