Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubvrs Structured version   Visualization version   GIF version

Theorem msubvrs 35532
Description: The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubvrs.s 𝑆 = (mSubst‘𝑇)
msubvrs.e 𝐸 = (mEx‘𝑇)
msubvrs.v 𝑉 = (mVars‘𝑇)
msubvrs.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
msubvrs ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆𝑋𝐸) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐹   𝑥,𝑇   𝑥,𝑋   𝑥,𝑉
Allowed substitution hints:   𝑆(𝑥)   𝐻(𝑥)

Proof of Theorem msubvrs
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubvrs.e . . . . . 6 𝐸 = (mEx‘𝑇)
2 eqid 2729 . . . . . 6 (mRSubst‘𝑇) = (mRSubst‘𝑇)
3 msubvrs.s . . . . . 6 𝑆 = (mSubst‘𝑇)
41, 2, 3elmsubrn 35500 . . . . 5 ran 𝑆 = ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
54eleq2i 2820 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
6 eqid 2729 . . . . 5 (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
71fvexi 6840 . . . . . 6 𝐸 ∈ V
87mptex 7163 . . . . 5 (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) ∈ V
96, 8elrnmpti 5908 . . . 4 (𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
105, 9bitri 275 . . 3 (𝐹 ∈ ran 𝑆 ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
11 simp2 1137 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑓 ∈ ran (mRSubst‘𝑇))
12 simp3 1138 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑋𝐸)
13 eqid 2729 . . . . . . . . . . . 12 (mTC‘𝑇) = (mTC‘𝑇)
14 eqid 2729 . . . . . . . . . . . 12 (mREx‘𝑇) = (mREx‘𝑇)
1513, 1, 14mexval 35474 . . . . . . . . . . 11 𝐸 = ((mTC‘𝑇) × (mREx‘𝑇))
1612, 15eleqtrdi 2838 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
17 xp2nd 7964 . . . . . . . . . 10 (𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (2nd𝑋) ∈ (mREx‘𝑇))
1816, 17syl 17 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd𝑋) ∈ (mREx‘𝑇))
19 eqid 2729 . . . . . . . . . 10 (mVR‘𝑇) = (mVR‘𝑇)
202, 19, 14mrsubvrs 35494 . . . . . . . . 9 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ (2nd𝑋) ∈ (mREx‘𝑇)) → (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
2111, 18, 20syl2anc 584 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
22 fveq2 6826 . . . . . . . . . . . . 13 (𝑒 = 𝑋 → (1st𝑒) = (1st𝑋))
23 2fveq3 6831 . . . . . . . . . . . . 13 (𝑒 = 𝑋 → (𝑓‘(2nd𝑒)) = (𝑓‘(2nd𝑋)))
2422, 23opeq12d 4835 . . . . . . . . . . . 12 (𝑒 = 𝑋 → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
25 eqid 2729 . . . . . . . . . . . 12 (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)
26 opex 5411 . . . . . . . . . . . 12 ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ ∈ V
2724, 25, 26fvmpt3i 6939 . . . . . . . . . . 11 (𝑋𝐸 → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋) = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
2812, 27syl 17 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋) = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
2928fveq2d 6830 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩))
30 xp1st 7963 . . . . . . . . . . . . 13 (𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (1st𝑋) ∈ (mTC‘𝑇))
3116, 30syl 17 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (1st𝑋) ∈ (mTC‘𝑇))
322, 14mrsubf 35489 . . . . . . . . . . . . . 14 (𝑓 ∈ ran (mRSubst‘𝑇) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
3311, 32syl 17 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
3417, 15eleq2s 2846 . . . . . . . . . . . . . 14 (𝑋𝐸 → (2nd𝑋) ∈ (mREx‘𝑇))
3512, 34syl 17 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd𝑋) ∈ (mREx‘𝑇))
3633, 35ffvelcdmd 7023 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑓‘(2nd𝑋)) ∈ (mREx‘𝑇))
37 opelxpi 5660 . . . . . . . . . . . 12 (((1st𝑋) ∈ (mTC‘𝑇) ∧ (𝑓‘(2nd𝑋)) ∈ (mREx‘𝑇)) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3831, 36, 37syl2anc 584 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3938, 15eleqtrrdi 2839 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ 𝐸)
40 msubvrs.v . . . . . . . . . . 11 𝑉 = (mVars‘𝑇)
4119, 1, 40mvrsval 35477 . . . . . . . . . 10 (⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ 𝐸 → (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)))
4239, 41syl 17 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)))
43 fvex 6839 . . . . . . . . . . . . 13 (1st𝑋) ∈ V
44 fvex 6839 . . . . . . . . . . . . 13 (𝑓‘(2nd𝑋)) ∈ V
4543, 44op2nd 7940 . . . . . . . . . . . 12 (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (𝑓‘(2nd𝑋))
4645a1i 11 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (𝑓‘(2nd𝑋)))
4746rneqd 5884 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = ran (𝑓‘(2nd𝑋)))
4847ineq1d 4172 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)) = (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)))
4929, 42, 483eqtrd 2768 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)))
5019, 1, 40mvrsval 35477 . . . . . . . . . . 11 (𝑋𝐸 → (𝑉𝑋) = (ran (2nd𝑋) ∩ (mVR‘𝑇)))
5112, 50syl 17 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉𝑋) = (ran (2nd𝑋) ∩ (mVR‘𝑇)))
5251iuneq1d 4972 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
53 msubvrs.h . . . . . . . . . . . . . . . . 17 𝐻 = (mVH‘𝑇)
5419, 1, 53mvhf 35530 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → 𝐻:(mVR‘𝑇)⟶𝐸)
55543ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝐻:(mVR‘𝑇)⟶𝐸)
56 inss2 4191 . . . . . . . . . . . . . . . 16 (ran (2nd𝑋) ∩ (mVR‘𝑇)) ⊆ (mVR‘𝑇)
5756sseli 3933 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇)) → 𝑥 ∈ (mVR‘𝑇))
58 ffvelcdm 7019 . . . . . . . . . . . . . . 15 ((𝐻:(mVR‘𝑇)⟶𝐸𝑥 ∈ (mVR‘𝑇)) → (𝐻𝑥) ∈ 𝐸)
5955, 57, 58syl2an 596 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝐻𝑥) ∈ 𝐸)
60 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐻𝑥) → (1st𝑒) = (1st ‘(𝐻𝑥)))
61 2fveq3 6831 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐻𝑥) → (𝑓‘(2nd𝑒)) = (𝑓‘(2nd ‘(𝐻𝑥))))
6260, 61opeq12d 4835 . . . . . . . . . . . . . . 15 (𝑒 = (𝐻𝑥) → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6362, 25, 26fvmpt3i 6939 . . . . . . . . . . . . . 14 ((𝐻𝑥) ∈ 𝐸 → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6459, 63syl 17 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6557adantl 481 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑥 ∈ (mVR‘𝑇))
66 eqid 2729 . . . . . . . . . . . . . . . . 17 (mType‘𝑇) = (mType‘𝑇)
6719, 66, 53mvhval 35506 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (mVR‘𝑇) → (𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩)
6865, 67syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩)
69 fvex 6839 . . . . . . . . . . . . . . . 16 ((mType‘𝑇)‘𝑥) ∈ V
70 s1cli 14530 . . . . . . . . . . . . . . . . 17 ⟨“𝑥”⟩ ∈ Word V
7170elexi 3461 . . . . . . . . . . . . . . . 16 ⟨“𝑥”⟩ ∈ V
7269, 71op1std 7941 . . . . . . . . . . . . . . 15 ((𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩ → (1st ‘(𝐻𝑥)) = ((mType‘𝑇)‘𝑥))
7368, 72syl 17 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (1st ‘(𝐻𝑥)) = ((mType‘𝑇)‘𝑥))
7469, 71op2ndd 7942 . . . . . . . . . . . . . . . 16 ((𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩ → (2nd ‘(𝐻𝑥)) = ⟨“𝑥”⟩)
7568, 74syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (2nd ‘(𝐻𝑥)) = ⟨“𝑥”⟩)
7675fveq2d 6830 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑓‘(2nd ‘(𝐻𝑥))) = (𝑓‘⟨“𝑥”⟩))
7773, 76opeq12d 4835 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩ = ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩)
7864, 77eqtrd 2764 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩)
7978fveq2d 6830 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩))
80 simpl1 1192 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑇 ∈ mFS)
8119, 13, 66mtyf2 35523 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇))
8280, 81syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇))
8382, 65ffvelcdmd 7023 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((mType‘𝑇)‘𝑥) ∈ (mTC‘𝑇))
8433adantr 480 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
85 elun2 4136 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (mVR‘𝑇) → 𝑥 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
8665, 85syl 17 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑥 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
8786s1cld 14528 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨“𝑥”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
88 eqid 2729 . . . . . . . . . . . . . . . . . 18 (mCN‘𝑇) = (mCN‘𝑇)
8988, 19, 14mrexval 35473 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ mFS → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
9080, 89syl 17 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
9187, 90eleqtrrd 2831 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨“𝑥”⟩ ∈ (mREx‘𝑇))
9284, 91ffvelcdmd 7023 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑓‘⟨“𝑥”⟩) ∈ (mREx‘𝑇))
93 opelxpi 5660 . . . . . . . . . . . . . 14 ((((mType‘𝑇)‘𝑥) ∈ (mTC‘𝑇) ∧ (𝑓‘⟨“𝑥”⟩) ∈ (mREx‘𝑇)) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
9483, 92, 93syl2anc 584 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
9594, 15eleqtrrdi 2839 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ 𝐸)
9619, 1, 40mvrsval 35477 . . . . . . . . . . . 12 (⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ 𝐸 → (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)))
9795, 96syl 17 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)))
98 fvex 6839 . . . . . . . . . . . . . . 15 (𝑓‘⟨“𝑥”⟩) ∈ V
9969, 98op2nd 7940 . . . . . . . . . . . . . 14 (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (𝑓‘⟨“𝑥”⟩)
10099a1i 11 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (𝑓‘⟨“𝑥”⟩))
101100rneqd 5884 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = ran (𝑓‘⟨“𝑥”⟩))
102101ineq1d 4172 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)) = (ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10379, 97, 1023eqtrd 2768 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = (ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
104103iuneq2dv 4969 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10552, 104eqtrd 2764 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10621, 49, 1053eqtr4d 2774 . . . . . . 7 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
107 fveq1 6825 . . . . . . . . 9 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝐹𝑋) = ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋))
108107fveq2d 6830 . . . . . . . 8 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)))
109 fveq1 6825 . . . . . . . . . 10 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝐹‘(𝐻𝑥)) = ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)))
110109fveq2d 6830 . . . . . . . . 9 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹‘(𝐻𝑥))) = (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
111110iuneq2d 4975 . . . . . . . 8 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
112108, 111eqeq12d 2745 . . . . . . 7 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → ((𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))) ↔ (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)))))
113106, 112syl5ibrcom 247 . . . . . 6 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥)))))
1141133expia 1121 . . . . 5 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇)) → (𝑋𝐸 → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
115114com23 86 . . . 4 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇)) → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
116115rexlimdva 3130 . . 3 (𝑇 ∈ mFS → (∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
11710, 116biimtrid 242 . 2 (𝑇 ∈ mFS → (𝐹 ∈ ran 𝑆 → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
1181173imp 1110 1 ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆𝑋𝐸) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3438  cun 3903  cin 3904  cop 4585   ciun 4944  cmpt 5176   × cxp 5621  ran crn 5624  wf 6482  cfv 6486  1st c1st 7929  2nd c2nd 7930  Word cword 14438  ⟨“cs1 14520  mCNcmcn 35432  mVRcmvar 35433  mTypecmty 35434  mTCcmtc 35436  mRExcmrex 35438  mExcmex 35439  mVarscmvrs 35441  mRSubstcmrsub 35442  mSubstcmsub 35443  mVHcmvh 35444  mFScmfs 35448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-frmd 18741  df-mrex 35458  df-mex 35459  df-mvrs 35461  df-mrsub 35462  df-msub 35463  df-mvh 35464  df-mfs 35468
This theorem is referenced by:  mclsppslem  35555
  Copyright terms: Public domain W3C validator