| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhf | Structured version Visualization version GIF version | ||
| Description: The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvhf.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mvhf.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mvhf.h | ⊢ 𝐻 = (mVH‘𝑇) |
| Ref | Expression |
|---|---|
| mvhf | ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvhf.v | . . . . . 6 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
| 4 | 1, 2, 3 | mtyf2 35545 | . . . . 5 ⊢ (𝑇 ∈ mFS → (mType‘𝑇):𝑉⟶(mTC‘𝑇)) |
| 5 | 4 | ffvelcdmda 7059 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → ((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇)) |
| 6 | elun2 4149 | . . . . . . 7 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) | |
| 7 | 6 | adantl 481 | . . . . . 6 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) |
| 8 | 7 | s1cld 14575 | . . . . 5 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → 〈“𝑣”〉 ∈ Word ((mCN‘𝑇) ∪ 𝑉)) |
| 9 | eqid 2730 | . . . . . . 7 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
| 10 | eqid 2730 | . . . . . . 7 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
| 11 | 9, 1, 10 | mrexval 35495 | . . . . . 6 ⊢ (𝑇 ∈ mFS → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ 𝑉)) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ 𝑉)) |
| 13 | 8, 12 | eleqtrrd 2832 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → 〈“𝑣”〉 ∈ (mREx‘𝑇)) |
| 14 | opelxpi 5678 | . . . 4 ⊢ ((((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇) ∧ 〈“𝑣”〉 ∈ (mREx‘𝑇)) → 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 ∈ ((mTC‘𝑇) × (mREx‘𝑇))) | |
| 15 | 5, 13, 14 | syl2anc 584 | . . 3 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 ∈ ((mTC‘𝑇) × (mREx‘𝑇))) |
| 16 | mvhf.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
| 17 | 2, 16, 10 | mexval 35496 | . . 3 ⊢ 𝐸 = ((mTC‘𝑇) × (mREx‘𝑇)) |
| 18 | 15, 17 | eleqtrrdi 2840 | . 2 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 ∈ 𝐸) |
| 19 | mvhf.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
| 20 | 1, 3, 19 | mvhfval 35527 | . 2 ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉) |
| 21 | 18, 20 | fmptd 7089 | 1 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 〈cop 4598 × cxp 5639 ⟶wf 6510 ‘cfv 6514 Word cword 14485 〈“cs1 14567 mCNcmcn 35454 mVRcmvar 35455 mTypecmty 35456 mTCcmtc 35458 mRExcmrex 35460 mExcmex 35461 mVHcmvh 35466 mFScmfs 35470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-s1 14568 df-mrex 35480 df-mex 35481 df-mvh 35486 df-mfs 35490 |
| This theorem is referenced by: mvhf1 35553 msubvrs 35554 mclsssvlem 35556 vhmcls 35560 mclsax 35563 mclsind 35564 mclsppslem 35577 mclspps 35578 |
| Copyright terms: Public domain | W3C validator |