Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhf Structured version   Visualization version   GIF version

Theorem mvhf 32862
 Description: The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhf.v 𝑉 = (mVR‘𝑇)
mvhf.e 𝐸 = (mEx‘𝑇)
mvhf.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhf (𝑇 ∈ mFS → 𝐻:𝑉𝐸)

Proof of Theorem mvhf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 mvhf.v . . . . . 6 𝑉 = (mVR‘𝑇)
2 eqid 2824 . . . . . 6 (mTC‘𝑇) = (mTC‘𝑇)
3 eqid 2824 . . . . . 6 (mType‘𝑇) = (mType‘𝑇)
41, 2, 3mtyf2 32855 . . . . 5 (𝑇 ∈ mFS → (mType‘𝑇):𝑉⟶(mTC‘𝑇))
54ffvelrnda 6842 . . . 4 ((𝑇 ∈ mFS ∧ 𝑣𝑉) → ((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇))
6 elun2 4139 . . . . . . 7 (𝑣𝑉𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉))
76adantl 485 . . . . . 6 ((𝑇 ∈ mFS ∧ 𝑣𝑉) → 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉))
87s1cld 13957 . . . . 5 ((𝑇 ∈ mFS ∧ 𝑣𝑉) → ⟨“𝑣”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
9 eqid 2824 . . . . . . 7 (mCN‘𝑇) = (mCN‘𝑇)
10 eqid 2824 . . . . . . 7 (mREx‘𝑇) = (mREx‘𝑇)
119, 1, 10mrexval 32805 . . . . . 6 (𝑇 ∈ mFS → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ 𝑉))
1211adantr 484 . . . . 5 ((𝑇 ∈ mFS ∧ 𝑣𝑉) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ 𝑉))
138, 12eleqtrrd 2919 . . . 4 ((𝑇 ∈ mFS ∧ 𝑣𝑉) → ⟨“𝑣”⟩ ∈ (mREx‘𝑇))
14 opelxpi 5579 . . . 4 ((((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇) ∧ ⟨“𝑣”⟩ ∈ (mREx‘𝑇)) → ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
155, 13, 14syl2anc 587 . . 3 ((𝑇 ∈ mFS ∧ 𝑣𝑉) → ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
16 mvhf.e . . . 4 𝐸 = (mEx‘𝑇)
172, 16, 10mexval 32806 . . 3 𝐸 = ((mTC‘𝑇) × (mREx‘𝑇))
1815, 17eleqtrrdi 2927 . 2 ((𝑇 ∈ mFS ∧ 𝑣𝑉) → ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ ∈ 𝐸)
19 mvhf.h . . 3 𝐻 = (mVH‘𝑇)
201, 3, 19mvhfval 32837 . 2 𝐻 = (𝑣𝑉 ↦ ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩)
2118, 20fmptd 6869 1 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ∪ cun 3917  ⟨cop 4556   × cxp 5540  ⟶wf 6339  ‘cfv 6343  Word cword 13866  ⟨“cs1 13949  mCNcmcn 32764  mVRcmvar 32765  mTypecmty 32766  mTCcmtc 32768  mRExcmrex 32770  mExcmex 32771  mVHcmvh 32776  mFScmfs 32780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-s1 13950  df-mrex 32790  df-mex 32791  df-mvh 32796  df-mfs 32800 This theorem is referenced by:  mvhf1  32863  msubvrs  32864  mclsssvlem  32866  vhmcls  32870  mclsax  32873  mclsind  32874  mclsppslem  32887  mclspps  32888
 Copyright terms: Public domain W3C validator