![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhf | Structured version Visualization version GIF version |
Description: The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvhf.v | β’ π = (mVRβπ) |
mvhf.e | β’ πΈ = (mExβπ) |
mvhf.h | β’ π» = (mVHβπ) |
Ref | Expression |
---|---|
mvhf | β’ (π β mFS β π»:πβΆπΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvhf.v | . . . . . 6 β’ π = (mVRβπ) | |
2 | eqid 2730 | . . . . . 6 β’ (mTCβπ) = (mTCβπ) | |
3 | eqid 2730 | . . . . . 6 β’ (mTypeβπ) = (mTypeβπ) | |
4 | 1, 2, 3 | mtyf2 34838 | . . . . 5 β’ (π β mFS β (mTypeβπ):πβΆ(mTCβπ)) |
5 | 4 | ffvelcdmda 7087 | . . . 4 β’ ((π β mFS β§ π£ β π) β ((mTypeβπ)βπ£) β (mTCβπ)) |
6 | elun2 4178 | . . . . . . 7 β’ (π£ β π β π£ β ((mCNβπ) βͺ π)) | |
7 | 6 | adantl 480 | . . . . . 6 β’ ((π β mFS β§ π£ β π) β π£ β ((mCNβπ) βͺ π)) |
8 | 7 | s1cld 14559 | . . . . 5 β’ ((π β mFS β§ π£ β π) β β¨βπ£ββ© β Word ((mCNβπ) βͺ π)) |
9 | eqid 2730 | . . . . . . 7 β’ (mCNβπ) = (mCNβπ) | |
10 | eqid 2730 | . . . . . . 7 β’ (mRExβπ) = (mRExβπ) | |
11 | 9, 1, 10 | mrexval 34788 | . . . . . 6 β’ (π β mFS β (mRExβπ) = Word ((mCNβπ) βͺ π)) |
12 | 11 | adantr 479 | . . . . 5 β’ ((π β mFS β§ π£ β π) β (mRExβπ) = Word ((mCNβπ) βͺ π)) |
13 | 8, 12 | eleqtrrd 2834 | . . . 4 β’ ((π β mFS β§ π£ β π) β β¨βπ£ββ© β (mRExβπ)) |
14 | opelxpi 5714 | . . . 4 β’ ((((mTypeβπ)βπ£) β (mTCβπ) β§ β¨βπ£ββ© β (mRExβπ)) β β¨((mTypeβπ)βπ£), β¨βπ£ββ©β© β ((mTCβπ) Γ (mRExβπ))) | |
15 | 5, 13, 14 | syl2anc 582 | . . 3 β’ ((π β mFS β§ π£ β π) β β¨((mTypeβπ)βπ£), β¨βπ£ββ©β© β ((mTCβπ) Γ (mRExβπ))) |
16 | mvhf.e | . . . 4 β’ πΈ = (mExβπ) | |
17 | 2, 16, 10 | mexval 34789 | . . 3 β’ πΈ = ((mTCβπ) Γ (mRExβπ)) |
18 | 15, 17 | eleqtrrdi 2842 | . 2 β’ ((π β mFS β§ π£ β π) β β¨((mTypeβπ)βπ£), β¨βπ£ββ©β© β πΈ) |
19 | mvhf.h | . . 3 β’ π» = (mVHβπ) | |
20 | 1, 3, 19 | mvhfval 34820 | . 2 β’ π» = (π£ β π β¦ β¨((mTypeβπ)βπ£), β¨βπ£ββ©β©) |
21 | 18, 20 | fmptd 7116 | 1 β’ (π β mFS β π»:πβΆπΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βͺ cun 3947 β¨cop 4635 Γ cxp 5675 βΆwf 6540 βcfv 6544 Word cword 14470 β¨βcs1 14551 mCNcmcn 34747 mVRcmvar 34748 mTypecmty 34749 mTCcmtc 34751 mRExcmrex 34753 mExcmex 34754 mVHcmvh 34759 mFScmfs 34763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-fzo 13634 df-hash 14297 df-word 14471 df-s1 14552 df-mrex 34773 df-mex 34774 df-mvh 34779 df-mfs 34783 |
This theorem is referenced by: mvhf1 34846 msubvrs 34847 mclsssvlem 34849 vhmcls 34853 mclsax 34856 mclsind 34857 mclsppslem 34870 mclspps 34871 |
Copyright terms: Public domain | W3C validator |