Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf | Structured version Visualization version GIF version |
Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mtyf.v | ⊢ 𝑉 = (mVR‘𝑇) |
mtyf.f | ⊢ 𝐹 = (mVT‘𝑇) |
mtyf.y | ⊢ 𝑌 = (mType‘𝑇) |
Ref | Expression |
---|---|
mtyf | ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtyf.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | eqid 2736 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
3 | mtyf.y | . . . 4 ⊢ 𝑌 = (mType‘𝑇) | |
4 | 1, 2, 3 | mtyf2 33562 | . . 3 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇)) |
5 | ffn 6630 | . . . 4 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉) | |
6 | dffn4 6724 | . . . 4 ⊢ (𝑌 Fn 𝑉 ↔ 𝑌:𝑉–onto→ran 𝑌) | |
7 | 5, 6 | sylib 217 | . . 3 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉–onto→ran 𝑌) |
8 | fof 6718 | . . 3 ⊢ (𝑌:𝑉–onto→ran 𝑌 → 𝑌:𝑉⟶ran 𝑌) | |
9 | 4, 7, 8 | 3syl 18 | . 2 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌) |
10 | mtyf.f | . . . 4 ⊢ 𝐹 = (mVT‘𝑇) | |
11 | 10, 3 | mvtval 33511 | . . 3 ⊢ 𝐹 = ran 𝑌 |
12 | feq3 6613 | . . 3 ⊢ (𝐹 = ran 𝑌 → (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌)) | |
13 | 11, 12 | ax-mp 5 | . 2 ⊢ (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌) |
14 | 9, 13 | sylibr 233 | 1 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 ran crn 5601 Fn wfn 6453 ⟶wf 6454 –onto→wfo 6456 ‘cfv 6458 mVRcmvar 33472 mTypecmty 33473 mVTcmvt 33474 mTCcmtc 33475 mFScmfs 33487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fo 6464 df-fv 6466 df-mvt 33496 df-mfs 33507 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |