Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mtyf Structured version   Visualization version   GIF version

Theorem mtyf 35596
Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mtyf.v 𝑉 = (mVR‘𝑇)
mtyf.f 𝐹 = (mVT‘𝑇)
mtyf.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mtyf (𝑇 ∈ mFS → 𝑌:𝑉𝐹)

Proof of Theorem mtyf
StepHypRef Expression
1 mtyf.v . . . 4 𝑉 = (mVR‘𝑇)
2 eqid 2731 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
3 mtyf.y . . . 4 𝑌 = (mType‘𝑇)
41, 2, 3mtyf2 35595 . . 3 (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇))
5 ffn 6651 . . . 4 (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉)
6 dffn4 6741 . . . 4 (𝑌 Fn 𝑉𝑌:𝑉onto→ran 𝑌)
75, 6sylib 218 . . 3 (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉onto→ran 𝑌)
8 fof 6735 . . 3 (𝑌:𝑉onto→ran 𝑌𝑌:𝑉⟶ran 𝑌)
94, 7, 83syl 18 . 2 (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌)
10 mtyf.f . . . 4 𝐹 = (mVT‘𝑇)
1110, 3mvtval 35544 . . 3 𝐹 = ran 𝑌
12 feq3 6631 . . 3 (𝐹 = ran 𝑌 → (𝑌:𝑉𝐹𝑌:𝑉⟶ran 𝑌))
1311, 12ax-mp 5 . 2 (𝑌:𝑉𝐹𝑌:𝑉⟶ran 𝑌)
149, 13sylibr 234 1 (𝑇 ∈ mFS → 𝑌:𝑉𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  ran crn 5615   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  mVRcmvar 35505  mTypecmty 35506  mVTcmvt 35507  mTCcmtc 35508  mFScmfs 35520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-mvt 35529  df-mfs 35540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator