| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf | Structured version Visualization version GIF version | ||
| Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mtyf.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mtyf.f | ⊢ 𝐹 = (mVT‘𝑇) |
| mtyf.y | ⊢ 𝑌 = (mType‘𝑇) |
| Ref | Expression |
|---|---|
| mtyf | ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtyf.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | eqid 2729 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 3 | mtyf.y | . . . 4 ⊢ 𝑌 = (mType‘𝑇) | |
| 4 | 1, 2, 3 | mtyf2 35528 | . . 3 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇)) |
| 5 | ffn 6652 | . . . 4 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉) | |
| 6 | dffn4 6742 | . . . 4 ⊢ (𝑌 Fn 𝑉 ↔ 𝑌:𝑉–onto→ran 𝑌) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉–onto→ran 𝑌) |
| 8 | fof 6736 | . . 3 ⊢ (𝑌:𝑉–onto→ran 𝑌 → 𝑌:𝑉⟶ran 𝑌) | |
| 9 | 4, 7, 8 | 3syl 18 | . 2 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌) |
| 10 | mtyf.f | . . . 4 ⊢ 𝐹 = (mVT‘𝑇) | |
| 11 | 10, 3 | mvtval 35477 | . . 3 ⊢ 𝐹 = ran 𝑌 |
| 12 | feq3 6632 | . . 3 ⊢ (𝐹 = ran 𝑌 → (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌)) | |
| 13 | 11, 12 | ax-mp 5 | . 2 ⊢ (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌) |
| 14 | 9, 13 | sylibr 234 | 1 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ran crn 5620 Fn wfn 6477 ⟶wf 6478 –onto→wfo 6480 ‘cfv 6482 mVRcmvar 35438 mTypecmty 35439 mVTcmvt 35440 mTCcmtc 35441 mFScmfs 35453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-mvt 35462 df-mfs 35473 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |