Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mtyf Structured version   Visualization version   GIF version

Theorem mtyf 35512
Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mtyf.v 𝑉 = (mVR‘𝑇)
mtyf.f 𝐹 = (mVT‘𝑇)
mtyf.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mtyf (𝑇 ∈ mFS → 𝑌:𝑉𝐹)

Proof of Theorem mtyf
StepHypRef Expression
1 mtyf.v . . . 4 𝑉 = (mVR‘𝑇)
2 eqid 2729 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
3 mtyf.y . . . 4 𝑌 = (mType‘𝑇)
41, 2, 3mtyf2 35511 . . 3 (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇))
5 ffn 6670 . . . 4 (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉)
6 dffn4 6760 . . . 4 (𝑌 Fn 𝑉𝑌:𝑉onto→ran 𝑌)
75, 6sylib 218 . . 3 (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉onto→ran 𝑌)
8 fof 6754 . . 3 (𝑌:𝑉onto→ran 𝑌𝑌:𝑉⟶ran 𝑌)
94, 7, 83syl 18 . 2 (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌)
10 mtyf.f . . . 4 𝐹 = (mVT‘𝑇)
1110, 3mvtval 35460 . . 3 𝐹 = ran 𝑌
12 feq3 6650 . . 3 (𝐹 = ran 𝑌 → (𝑌:𝑉𝐹𝑌:𝑉⟶ran 𝑌))
1311, 12ax-mp 5 . 2 (𝑌:𝑉𝐹𝑌:𝑉⟶ran 𝑌)
149, 13sylibr 234 1 (𝑇 ∈ mFS → 𝑌:𝑉𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  ran crn 5632   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499  mVRcmvar 35421  mTypecmty 35422  mVTcmvt 35423  mTCcmtc 35424  mFScmfs 35436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-mvt 35445  df-mfs 35456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator