| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf | Structured version Visualization version GIF version | ||
| Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mtyf.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mtyf.f | ⊢ 𝐹 = (mVT‘𝑇) |
| mtyf.y | ⊢ 𝑌 = (mType‘𝑇) |
| Ref | Expression |
|---|---|
| mtyf | ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtyf.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | eqid 2731 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 3 | mtyf.y | . . . 4 ⊢ 𝑌 = (mType‘𝑇) | |
| 4 | 1, 2, 3 | mtyf2 35595 | . . 3 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇)) |
| 5 | ffn 6651 | . . . 4 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉) | |
| 6 | dffn4 6741 | . . . 4 ⊢ (𝑌 Fn 𝑉 ↔ 𝑌:𝑉–onto→ran 𝑌) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉–onto→ran 𝑌) |
| 8 | fof 6735 | . . 3 ⊢ (𝑌:𝑉–onto→ran 𝑌 → 𝑌:𝑉⟶ran 𝑌) | |
| 9 | 4, 7, 8 | 3syl 18 | . 2 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌) |
| 10 | mtyf.f | . . . 4 ⊢ 𝐹 = (mVT‘𝑇) | |
| 11 | 10, 3 | mvtval 35544 | . . 3 ⊢ 𝐹 = ran 𝑌 |
| 12 | feq3 6631 | . . 3 ⊢ (𝐹 = ran 𝑌 → (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌)) | |
| 13 | 11, 12 | ax-mp 5 | . 2 ⊢ (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌) |
| 14 | 9, 13 | sylibr 234 | 1 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ran crn 5615 Fn wfn 6476 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 mVRcmvar 35505 mTypecmty 35506 mVTcmvt 35507 mTCcmtc 35508 mFScmfs 35520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-mvt 35529 df-mfs 35540 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |