![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf | Structured version Visualization version GIF version |
Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mtyf.v | β’ π = (mVRβπ) |
mtyf.f | β’ πΉ = (mVTβπ) |
mtyf.y | β’ π = (mTypeβπ) |
Ref | Expression |
---|---|
mtyf | β’ (π β mFS β π:πβΆπΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtyf.v | . . . 4 β’ π = (mVRβπ) | |
2 | eqid 2731 | . . . 4 β’ (mTCβπ) = (mTCβπ) | |
3 | mtyf.y | . . . 4 β’ π = (mTypeβπ) | |
4 | 1, 2, 3 | mtyf2 34855 | . . 3 β’ (π β mFS β π:πβΆ(mTCβπ)) |
5 | ffn 6717 | . . . 4 β’ (π:πβΆ(mTCβπ) β π Fn π) | |
6 | dffn4 6811 | . . . 4 β’ (π Fn π β π:πβontoβran π) | |
7 | 5, 6 | sylib 217 | . . 3 β’ (π:πβΆ(mTCβπ) β π:πβontoβran π) |
8 | fof 6805 | . . 3 β’ (π:πβontoβran π β π:πβΆran π) | |
9 | 4, 7, 8 | 3syl 18 | . 2 β’ (π β mFS β π:πβΆran π) |
10 | mtyf.f | . . . 4 β’ πΉ = (mVTβπ) | |
11 | 10, 3 | mvtval 34804 | . . 3 β’ πΉ = ran π |
12 | feq3 6700 | . . 3 β’ (πΉ = ran π β (π:πβΆπΉ β π:πβΆran π)) | |
13 | 11, 12 | ax-mp 5 | . 2 β’ (π:πβΆπΉ β π:πβΆran π) |
14 | 9, 13 | sylibr 233 | 1 β’ (π β mFS β π:πβΆπΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1540 β wcel 2105 ran crn 5677 Fn wfn 6538 βΆwf 6539 βontoβwfo 6541 βcfv 6543 mVRcmvar 34765 mTypecmty 34766 mVTcmvt 34767 mTCcmtc 34768 mFScmfs 34780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-mvt 34789 df-mfs 34800 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |