| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf | Structured version Visualization version GIF version | ||
| Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mtyf.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mtyf.f | ⊢ 𝐹 = (mVT‘𝑇) |
| mtyf.y | ⊢ 𝑌 = (mType‘𝑇) |
| Ref | Expression |
|---|---|
| mtyf | ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtyf.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | eqid 2730 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 3 | mtyf.y | . . . 4 ⊢ 𝑌 = (mType‘𝑇) | |
| 4 | 1, 2, 3 | mtyf2 35545 | . . 3 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇)) |
| 5 | ffn 6691 | . . . 4 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉) | |
| 6 | dffn4 6781 | . . . 4 ⊢ (𝑌 Fn 𝑉 ↔ 𝑌:𝑉–onto→ran 𝑌) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉–onto→ran 𝑌) |
| 8 | fof 6775 | . . 3 ⊢ (𝑌:𝑉–onto→ran 𝑌 → 𝑌:𝑉⟶ran 𝑌) | |
| 9 | 4, 7, 8 | 3syl 18 | . 2 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌) |
| 10 | mtyf.f | . . . 4 ⊢ 𝐹 = (mVT‘𝑇) | |
| 11 | 10, 3 | mvtval 35494 | . . 3 ⊢ 𝐹 = ran 𝑌 |
| 12 | feq3 6671 | . . 3 ⊢ (𝐹 = ran 𝑌 → (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌)) | |
| 13 | 11, 12 | ax-mp 5 | . 2 ⊢ (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌) |
| 14 | 9, 13 | sylibr 234 | 1 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ran crn 5642 Fn wfn 6509 ⟶wf 6510 –onto→wfo 6512 ‘cfv 6514 mVRcmvar 35455 mTypecmty 35456 mVTcmvt 35457 mTCcmtc 35458 mFScmfs 35470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-mvt 35479 df-mfs 35490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |