![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf | Structured version Visualization version GIF version |
Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mtyf.v | ⊢ 𝑉 = (mVR‘𝑇) |
mtyf.f | ⊢ 𝐹 = (mVT‘𝑇) |
mtyf.y | ⊢ 𝑌 = (mType‘𝑇) |
Ref | Expression |
---|---|
mtyf | ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtyf.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | eqid 2740 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
3 | mtyf.y | . . . 4 ⊢ 𝑌 = (mType‘𝑇) | |
4 | 1, 2, 3 | mtyf2 35519 | . . 3 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇)) |
5 | ffn 6747 | . . . 4 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉) | |
6 | dffn4 6840 | . . . 4 ⊢ (𝑌 Fn 𝑉 ↔ 𝑌:𝑉–onto→ran 𝑌) | |
7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉–onto→ran 𝑌) |
8 | fof 6834 | . . 3 ⊢ (𝑌:𝑉–onto→ran 𝑌 → 𝑌:𝑉⟶ran 𝑌) | |
9 | 4, 7, 8 | 3syl 18 | . 2 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌) |
10 | mtyf.f | . . . 4 ⊢ 𝐹 = (mVT‘𝑇) | |
11 | 10, 3 | mvtval 35468 | . . 3 ⊢ 𝐹 = ran 𝑌 |
12 | feq3 6730 | . . 3 ⊢ (𝐹 = ran 𝑌 → (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌)) | |
13 | 11, 12 | ax-mp 5 | . 2 ⊢ (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌) |
14 | 9, 13 | sylibr 234 | 1 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ran crn 5701 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 mVRcmvar 35429 mTypecmty 35430 mVTcmvt 35431 mTCcmtc 35432 mFScmfs 35444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-mvt 35453 df-mfs 35464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |