Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mtyf Structured version   Visualization version   GIF version

Theorem mtyf 33563
Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mtyf.v 𝑉 = (mVR‘𝑇)
mtyf.f 𝐹 = (mVT‘𝑇)
mtyf.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mtyf (𝑇 ∈ mFS → 𝑌:𝑉𝐹)

Proof of Theorem mtyf
StepHypRef Expression
1 mtyf.v . . . 4 𝑉 = (mVR‘𝑇)
2 eqid 2736 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
3 mtyf.y . . . 4 𝑌 = (mType‘𝑇)
41, 2, 3mtyf2 33562 . . 3 (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇))
5 ffn 6630 . . . 4 (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉)
6 dffn4 6724 . . . 4 (𝑌 Fn 𝑉𝑌:𝑉onto→ran 𝑌)
75, 6sylib 217 . . 3 (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉onto→ran 𝑌)
8 fof 6718 . . 3 (𝑌:𝑉onto→ran 𝑌𝑌:𝑉⟶ran 𝑌)
94, 7, 83syl 18 . 2 (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌)
10 mtyf.f . . . 4 𝐹 = (mVT‘𝑇)
1110, 3mvtval 33511 . . 3 𝐹 = ran 𝑌
12 feq3 6613 . . 3 (𝐹 = ran 𝑌 → (𝑌:𝑉𝐹𝑌:𝑉⟶ran 𝑌))
1311, 12ax-mp 5 . 2 (𝑌:𝑉𝐹𝑌:𝑉⟶ran 𝑌)
149, 13sylibr 233 1 (𝑇 ∈ mFS → 𝑌:𝑉𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  ran crn 5601   Fn wfn 6453  wf 6454  ontowfo 6456  cfv 6458  mVRcmvar 33472  mTypecmty 33473  mVTcmvt 33474  mTCcmtc 33475  mFScmfs 33487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fo 6464  df-fv 6466  df-mvt 33496  df-mfs 33507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator