![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf | Structured version Visualization version GIF version |
Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mtyf.v | ⊢ 𝑉 = (mVR‘𝑇) |
mtyf.f | ⊢ 𝐹 = (mVT‘𝑇) |
mtyf.y | ⊢ 𝑌 = (mType‘𝑇) |
Ref | Expression |
---|---|
mtyf | ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtyf.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | eqid 2825 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
3 | mtyf.y | . . . 4 ⊢ 𝑌 = (mType‘𝑇) | |
4 | 1, 2, 3 | mtyf2 31994 | . . 3 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇)) |
5 | ffn 6278 | . . . 4 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉) | |
6 | dffn4 6359 | . . . 4 ⊢ (𝑌 Fn 𝑉 ↔ 𝑌:𝑉–onto→ran 𝑌) | |
7 | 5, 6 | sylib 210 | . . 3 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉–onto→ran 𝑌) |
8 | fof 6353 | . . 3 ⊢ (𝑌:𝑉–onto→ran 𝑌 → 𝑌:𝑉⟶ran 𝑌) | |
9 | 4, 7, 8 | 3syl 18 | . 2 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌) |
10 | mtyf.f | . . . 4 ⊢ 𝐹 = (mVT‘𝑇) | |
11 | 10, 3 | mvtval 31943 | . . 3 ⊢ 𝐹 = ran 𝑌 |
12 | feq3 6261 | . . 3 ⊢ (𝐹 = ran 𝑌 → (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌)) | |
13 | 11, 12 | ax-mp 5 | . 2 ⊢ (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌) |
14 | 9, 13 | sylibr 226 | 1 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1658 ∈ wcel 2166 ran crn 5343 Fn wfn 6118 ⟶wf 6119 –onto→wfo 6121 ‘cfv 6123 mVRcmvar 31904 mTypecmty 31905 mVTcmvt 31906 mTCcmtc 31907 mFScmfs 31919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-fo 6129 df-fv 6131 df-mvt 31928 df-mfs 31939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |