Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mtyf Structured version   Visualization version   GIF version

Theorem mtyf 33813
Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mtyf.v 𝑉 = (mVR‘𝑇)
mtyf.f 𝐹 = (mVT‘𝑇)
mtyf.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mtyf (𝑇 ∈ mFS → 𝑌:𝑉𝐹)

Proof of Theorem mtyf
StepHypRef Expression
1 mtyf.v . . . 4 𝑉 = (mVR‘𝑇)
2 eqid 2736 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
3 mtyf.y . . . 4 𝑌 = (mType‘𝑇)
41, 2, 3mtyf2 33812 . . 3 (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇))
5 ffn 6651 . . . 4 (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉)
6 dffn4 6745 . . . 4 (𝑌 Fn 𝑉𝑌:𝑉onto→ran 𝑌)
75, 6sylib 217 . . 3 (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉onto→ran 𝑌)
8 fof 6739 . . 3 (𝑌:𝑉onto→ran 𝑌𝑌:𝑉⟶ran 𝑌)
94, 7, 83syl 18 . 2 (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌)
10 mtyf.f . . . 4 𝐹 = (mVT‘𝑇)
1110, 3mvtval 33761 . . 3 𝐹 = ran 𝑌
12 feq3 6634 . . 3 (𝐹 = ran 𝑌 → (𝑌:𝑉𝐹𝑌:𝑉⟶ran 𝑌))
1311, 12ax-mp 5 . 2 (𝑌:𝑉𝐹𝑌:𝑉⟶ran 𝑌)
149, 13sylibr 233 1 (𝑇 ∈ mFS → 𝑌:𝑉𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  ran crn 5621   Fn wfn 6474  wf 6475  ontowfo 6477  cfv 6479  mVRcmvar 33722  mTypecmty 33723  mVTcmvt 33724  mTCcmtc 33725  mFScmfs 33737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-fo 6485  df-fv 6487  df-mvt 33746  df-mfs 33757
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator