Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf | Structured version Visualization version GIF version |
Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mtyf.v | ⊢ 𝑉 = (mVR‘𝑇) |
mtyf.f | ⊢ 𝐹 = (mVT‘𝑇) |
mtyf.y | ⊢ 𝑌 = (mType‘𝑇) |
Ref | Expression |
---|---|
mtyf | ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtyf.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | eqid 2736 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
3 | mtyf.y | . . . 4 ⊢ 𝑌 = (mType‘𝑇) | |
4 | 1, 2, 3 | mtyf2 33812 | . . 3 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶(mTC‘𝑇)) |
5 | ffn 6651 | . . . 4 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌 Fn 𝑉) | |
6 | dffn4 6745 | . . . 4 ⊢ (𝑌 Fn 𝑉 ↔ 𝑌:𝑉–onto→ran 𝑌) | |
7 | 5, 6 | sylib 217 | . . 3 ⊢ (𝑌:𝑉⟶(mTC‘𝑇) → 𝑌:𝑉–onto→ran 𝑌) |
8 | fof 6739 | . . 3 ⊢ (𝑌:𝑉–onto→ran 𝑌 → 𝑌:𝑉⟶ran 𝑌) | |
9 | 4, 7, 8 | 3syl 18 | . 2 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶ran 𝑌) |
10 | mtyf.f | . . . 4 ⊢ 𝐹 = (mVT‘𝑇) | |
11 | 10, 3 | mvtval 33761 | . . 3 ⊢ 𝐹 = ran 𝑌 |
12 | feq3 6634 | . . 3 ⊢ (𝐹 = ran 𝑌 → (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌)) | |
13 | 11, 12 | ax-mp 5 | . 2 ⊢ (𝑌:𝑉⟶𝐹 ↔ 𝑌:𝑉⟶ran 𝑌) |
14 | 9, 13 | sylibr 233 | 1 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ran crn 5621 Fn wfn 6474 ⟶wf 6475 –onto→wfo 6477 ‘cfv 6479 mVRcmvar 33722 mTypecmty 33723 mVTcmvt 33724 mTCcmtc 33725 mFScmfs 33737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fo 6485 df-fv 6487 df-mvt 33746 df-mfs 33757 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |