![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruc | Structured version Visualization version GIF version |
Description: The set of positive integers is strictly dominated by the set of real numbers, i.e. the real numbers are uncountable. The proof consists of lemmas ruclem1 15368 through ruclem13 15379 and this final piece. Our proof is based on the proof of Theorem 5.18 of [Truss] p. 114. See ruclem13 15379 for the function existence version of this theorem. For an informal discussion of this proof, see mmcomplex.html#uncountable. For an alternate proof see rucALT 15367. This is Metamath 100 proof #22. (Contributed by NM, 13-Oct-2004.) |
Ref | Expression |
---|---|
ruc | ⊢ ℕ ≺ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 10365 | . . 3 ⊢ ℝ ∈ V | |
2 | nnssre 11382 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | ssdomg 8289 | . . 3 ⊢ (ℝ ∈ V → (ℕ ⊆ ℝ → ℕ ≼ ℝ)) | |
4 | 1, 2, 3 | mp2 9 | . 2 ⊢ ℕ ≼ ℝ |
5 | ruclem13 15379 | . . . . 5 ⊢ ¬ 𝑓:ℕ–onto→ℝ | |
6 | f1ofo 6400 | . . . . 5 ⊢ (𝑓:ℕ–1-1-onto→ℝ → 𝑓:ℕ–onto→ℝ) | |
7 | 5, 6 | mto 189 | . . . 4 ⊢ ¬ 𝑓:ℕ–1-1-onto→ℝ |
8 | 7 | nex 1844 | . . 3 ⊢ ¬ ∃𝑓 𝑓:ℕ–1-1-onto→ℝ |
9 | bren 8252 | . . 3 ⊢ (ℕ ≈ ℝ ↔ ∃𝑓 𝑓:ℕ–1-1-onto→ℝ) | |
10 | 8, 9 | mtbir 315 | . 2 ⊢ ¬ ℕ ≈ ℝ |
11 | brsdom 8266 | . 2 ⊢ (ℕ ≺ ℝ ↔ (ℕ ≼ ℝ ∧ ¬ ℕ ≈ ℝ)) | |
12 | 4, 10, 11 | mpbir2an 701 | 1 ⊢ ℕ ≺ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1823 ∈ wcel 2107 Vcvv 3398 ⊆ wss 3792 class class class wbr 4888 –onto→wfo 6135 –1-1-onto→wf1o 6136 ≈ cen 8240 ≼ cdom 8241 ≺ csdm 8242 ℝcr 10273 ℕcn 11378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-n0 11647 df-z 11733 df-uz 11997 df-fz 12648 df-seq 13124 |
This theorem is referenced by: resdomq 15381 aleph1re 15382 aleph1irr 15383 |
Copyright terms: Public domain | W3C validator |