Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiso | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfiso.1 | ⊢ Ⅎ𝑥𝐻 |
nfiso.2 | ⊢ Ⅎ𝑥𝑅 |
nfiso.3 | ⊢ Ⅎ𝑥𝑆 |
nfiso.4 | ⊢ Ⅎ𝑥𝐴 |
nfiso.5 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfiso | ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 6427 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)))) | |
2 | nfiso.1 | . . . 4 ⊢ Ⅎ𝑥𝐻 | |
3 | nfiso.4 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfiso.5 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 2, 3, 4 | nff1o 6698 | . . 3 ⊢ Ⅎ𝑥 𝐻:𝐴–1-1-onto→𝐵 |
6 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
7 | nfiso.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
8 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
9 | 6, 7, 8 | nfbr 5117 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦𝑅𝑧 |
10 | 2, 6 | nffv 6766 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑦) |
11 | nfiso.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑆 | |
12 | 2, 8 | nffv 6766 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑧) |
13 | 10, 11, 12 | nfbr 5117 | . . . . . 6 ⊢ Ⅎ𝑥(𝐻‘𝑦)𝑆(𝐻‘𝑧) |
14 | 9, 13 | nfbi 1907 | . . . . 5 ⊢ Ⅎ𝑥(𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
15 | 3, 14 | nfralw 3149 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
16 | 3, 15 | nfralw 3149 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
17 | 5, 16 | nfan 1903 | . 2 ⊢ Ⅎ𝑥(𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧))) |
18 | 1, 17 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 Ⅎwnf 1787 Ⅎwnfc 2886 ∀wral 3063 class class class wbr 5070 –1-1-onto→wf1o 6417 ‘cfv 6418 Isom wiso 6419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |