Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiso | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfiso.1 | ⊢ Ⅎ𝑥𝐻 |
nfiso.2 | ⊢ Ⅎ𝑥𝑅 |
nfiso.3 | ⊢ Ⅎ𝑥𝑆 |
nfiso.4 | ⊢ Ⅎ𝑥𝐴 |
nfiso.5 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfiso | ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 6444 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)))) | |
2 | nfiso.1 | . . . 4 ⊢ Ⅎ𝑥𝐻 | |
3 | nfiso.4 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfiso.5 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 2, 3, 4 | nff1o 6716 | . . 3 ⊢ Ⅎ𝑥 𝐻:𝐴–1-1-onto→𝐵 |
6 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
7 | nfiso.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
8 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
9 | 6, 7, 8 | nfbr 5123 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦𝑅𝑧 |
10 | 2, 6 | nffv 6786 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑦) |
11 | nfiso.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑆 | |
12 | 2, 8 | nffv 6786 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑧) |
13 | 10, 11, 12 | nfbr 5123 | . . . . . 6 ⊢ Ⅎ𝑥(𝐻‘𝑦)𝑆(𝐻‘𝑧) |
14 | 9, 13 | nfbi 1906 | . . . . 5 ⊢ Ⅎ𝑥(𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
15 | 3, 14 | nfralw 3151 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
16 | 3, 15 | nfralw 3151 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
17 | 5, 16 | nfan 1902 | . 2 ⊢ Ⅎ𝑥(𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧))) |
18 | 1, 17 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 Ⅎwnf 1786 Ⅎwnfc 2887 ∀wral 3064 class class class wbr 5076 –1-1-onto→wf1o 6434 ‘cfv 6435 Isom wiso 6436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5077 df-opab 5139 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-isom 6444 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |