MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiso Structured version   Visualization version   GIF version

Theorem nfiso 7193
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfiso.1 𝑥𝐻
nfiso.2 𝑥𝑅
nfiso.3 𝑥𝑆
nfiso.4 𝑥𝐴
nfiso.5 𝑥𝐵
Assertion
Ref Expression
nfiso 𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)

Proof of Theorem nfiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 6442 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 ↔ (𝐻𝑦)𝑆(𝐻𝑧))))
2 nfiso.1 . . . 4 𝑥𝐻
3 nfiso.4 . . . 4 𝑥𝐴
4 nfiso.5 . . . 4 𝑥𝐵
52, 3, 4nff1o 6714 . . 3 𝑥 𝐻:𝐴1-1-onto𝐵
6 nfcv 2907 . . . . . . 7 𝑥𝑦
7 nfiso.2 . . . . . . 7 𝑥𝑅
8 nfcv 2907 . . . . . . 7 𝑥𝑧
96, 7, 8nfbr 5121 . . . . . 6 𝑥 𝑦𝑅𝑧
102, 6nffv 6784 . . . . . . 7 𝑥(𝐻𝑦)
11 nfiso.3 . . . . . . 7 𝑥𝑆
122, 8nffv 6784 . . . . . . 7 𝑥(𝐻𝑧)
1310, 11, 12nfbr 5121 . . . . . 6 𝑥(𝐻𝑦)𝑆(𝐻𝑧)
149, 13nfbi 1906 . . . . 5 𝑥(𝑦𝑅𝑧 ↔ (𝐻𝑦)𝑆(𝐻𝑧))
153, 14nfralw 3151 . . . 4 𝑥𝑧𝐴 (𝑦𝑅𝑧 ↔ (𝐻𝑦)𝑆(𝐻𝑧))
163, 15nfralw 3151 . . 3 𝑥𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 ↔ (𝐻𝑦)𝑆(𝐻𝑧))
175, 16nfan 1902 . 2 𝑥(𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 ↔ (𝐻𝑦)𝑆(𝐻𝑧)))
181, 17nfxfr 1855 1 𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wnf 1786  wnfc 2887  wral 3064   class class class wbr 5074  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator