| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiso | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfiso.1 | ⊢ Ⅎ𝑥𝐻 |
| nfiso.2 | ⊢ Ⅎ𝑥𝑅 |
| nfiso.3 | ⊢ Ⅎ𝑥𝑆 |
| nfiso.4 | ⊢ Ⅎ𝑥𝐴 |
| nfiso.5 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfiso | ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 6486 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)))) | |
| 2 | nfiso.1 | . . . 4 ⊢ Ⅎ𝑥𝐻 | |
| 3 | nfiso.4 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfiso.5 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 2, 3, 4 | nff1o 6757 | . . 3 ⊢ Ⅎ𝑥 𝐻:𝐴–1-1-onto→𝐵 |
| 6 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 7 | nfiso.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
| 8 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
| 9 | 6, 7, 8 | nfbr 5136 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦𝑅𝑧 |
| 10 | 2, 6 | nffv 6827 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑦) |
| 11 | nfiso.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑆 | |
| 12 | 2, 8 | nffv 6827 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑧) |
| 13 | 10, 11, 12 | nfbr 5136 | . . . . . 6 ⊢ Ⅎ𝑥(𝐻‘𝑦)𝑆(𝐻‘𝑧) |
| 14 | 9, 13 | nfbi 1904 | . . . . 5 ⊢ Ⅎ𝑥(𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
| 15 | 3, 14 | nfralw 3277 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
| 16 | 3, 15 | nfralw 3277 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
| 17 | 5, 16 | nfan 1900 | . 2 ⊢ Ⅎ𝑥(𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧))) |
| 18 | 1, 17 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 Ⅎwnf 1784 Ⅎwnfc 2877 ∀wral 3045 class class class wbr 5089 –1-1-onto→wf1o 6476 ‘cfv 6477 Isom wiso 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |