Step | Hyp | Ref
| Expression |
1 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ (𝑋𝐻(𝑁 + 2)))) |
2 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑅‘𝑦) = (𝑅‘𝑥)) |
3 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1))) |
4 | 2, 3 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑅‘𝑦) = (𝑦 prefix (𝑁 + 1)) ↔ (𝑅‘𝑥) = (𝑥 prefix (𝑁 + 1)))) |
5 | 1, 4 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑦) = (𝑦 prefix (𝑁 + 1))) ↔ (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑥) = (𝑥 prefix (𝑁 + 1))))) |
6 | 5 | imbi2d 340 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑦) = (𝑦 prefix (𝑁 + 1)))) ↔ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑥) = (𝑥 prefix (𝑁 + 1)))))) |
7 | | numclwwlk.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
8 | | numclwwlk.q |
. . . . . . . 8
⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
9 | | numclwwlk.h |
. . . . . . . 8
⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2)
↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
10 | | numclwwlk.r |
. . . . . . . 8
⊢ 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1))) |
11 | 7, 8, 9, 10 | numclwlk2lem2fv 28643 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑦) = (𝑦 prefix (𝑁 + 1)))) |
12 | 6, 11 | chvarvv 2003 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑥) = (𝑥 prefix (𝑁 + 1)))) |
13 | 12 | 3adant1 1128 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑥) = (𝑥 prefix (𝑁 + 1)))) |
14 | 13 | imp 406 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅‘𝑥) = (𝑥 prefix (𝑁 + 1))) |
15 | 7, 8, 9, 10 | numclwlk2lem2f 28642 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁)) |
16 | 15 | ffvelrnda 6943 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅‘𝑥) ∈ (𝑋𝑄𝑁)) |
17 | 14, 16 | eqeltrrd 2840 |
. . 3
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 prefix (𝑁 + 1)) ∈ (𝑋𝑄𝑁)) |
18 | 17 | ralrimiva 3107 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 prefix (𝑁 + 1)) ∈ (𝑋𝑄𝑁)) |
19 | 7, 8, 9 | numclwwlk2lem1 28641 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) → ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)))) |
20 | 19 | imp 406 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) |
21 | 7, 8 | numclwwlkovq 28639 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) |
22 | 21 | eleq2d 2824 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ 𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})) |
23 | 22 | 3adant1 1128 |
. . . . . . 7
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ 𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})) |
24 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0)) |
25 | 24 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑤 = 𝑢 → ((𝑤‘0) = 𝑋 ↔ (𝑢‘0) = 𝑋)) |
26 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑢 → (lastS‘𝑤) = (lastS‘𝑢)) |
27 | 26 | neeq1d 3002 |
. . . . . . . . 9
⊢ (𝑤 = 𝑢 → ((lastS‘𝑤) ≠ 𝑋 ↔ (lastS‘𝑢) ≠ 𝑋)) |
28 | 25, 27 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑤 = 𝑢 → (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋) ↔ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋))) |
29 | 28 | elrab 3617 |
. . . . . . 7
⊢ (𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ↔ (𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋))) |
30 | 23, 29 | bitrdi 286 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ (𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)))) |
31 | | wwlknbp1 28110 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1))) |
32 | | 3simpc 1148 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑢 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑢) = (𝑁 + 1)) → (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1))) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1))) |
34 | 7 | wrdeqi 14168 |
. . . . . . . . . . . . . . . . 17
⊢ Word
𝑉 = Word (Vtx‘𝐺) |
35 | 34 | eleq2i 2830 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ Word 𝑉 ↔ 𝑢 ∈ Word (Vtx‘𝐺)) |
36 | 35 | anbi1i 623 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ↔ (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1))) |
37 | 33, 36 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1))) |
38 | | simpll 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → 𝑢 ∈ Word 𝑉) |
39 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
40 | | 2nn 11976 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 2 ∈
ℕ |
41 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → 2 ∈
ℕ) |
42 | 41 | nnzd 12354 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 2 ∈
ℤ) |
43 | | nn0pzuz 12574 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ ℕ0
∧ 2 ∈ ℤ) → (𝑁 + 2) ∈
(ℤ≥‘2)) |
44 | 39, 42, 43 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ → (𝑁 + 2) ∈
(ℤ≥‘2)) |
45 | 9 | numclwwlkovh 28638 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁 + 2) ∈
(ℤ≥‘2)) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}) |
46 | 44, 45 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}) |
47 | 46 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})) |
48 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0)) |
49 | 48 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋)) |
50 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2))) |
51 | 50, 48 | neeq12d 3004 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) |
52 | 49, 51 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) |
53 | 52 | elrab 3617 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) |
54 | 47, 53 | bitrdi 286 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))) |
55 | 54 | 3adant1 1128 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))) |
56 | 55 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))) |
57 | 7 | clwwlknbp 28300 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2))) |
58 | | lencl 14164 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑢 ∈ Word 𝑉 → (♯‘𝑢) ∈
ℕ0) |
59 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((♯‘𝑢) ∈ ℕ0 ∧
(♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉) |
60 | | df-2 11966 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ 2 = (1 +
1) |
61 | 60 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑁 ∈ ℕ → 2 = (1 +
1)) |
62 | 61 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑁 ∈ ℕ → (𝑁 + 2) = (𝑁 + (1 + 1))) |
63 | | nncn 11911 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
64 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) |
65 | 63, 64, 64 | addassd 10928 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
66 | 62, 65 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑁 ∈ ℕ → (𝑁 + 2) = ((𝑁 + 1) + 1)) |
67 | 66 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((♯‘𝑢)
∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 2) = ((𝑁 + 1) + 1)) |
68 | 67 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((♯‘𝑢)
∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) →
((♯‘𝑥) = (𝑁 + 2) ↔
(♯‘𝑥) = ((𝑁 + 1) + 1))) |
69 | 68 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((♯‘𝑥) =
(𝑁 + 2) →
((((♯‘𝑢) ∈
ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = ((𝑁 + 1) + 1))) |
70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((♯‘𝑥)
= (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((((♯‘𝑢) ∈ ℕ0
∧ (♯‘𝑢) =
(𝑁 + 1)) ∧ 𝑁 ∈ ℕ) →
(♯‘𝑥) = ((𝑁 + 1) + 1))) |
71 | 70 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((♯‘𝑢) ∈ ℕ0 ∧
(♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (♯‘𝑥) = ((𝑁 + 1) + 1)) |
72 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((♯‘𝑢) =
(𝑁 + 1) →
((♯‘𝑢) + 1) =
((𝑁 + 1) +
1)) |
73 | 72 | ad3antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((♯‘𝑢) ∈ ℕ0 ∧
(♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((♯‘𝑢) + 1) = ((𝑁 + 1) + 1)) |
74 | 71, 73 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((♯‘𝑢) ∈ ℕ0 ∧
(♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (♯‘𝑥) = ((♯‘𝑢) + 1)) |
75 | 59, 74 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((♯‘𝑢) ∈ ℕ0 ∧
(♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))) |
76 | 75 | exp31 419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((♯‘𝑢)
∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) → (𝑁 ∈ ℕ →
(((♯‘𝑥) =
(𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
77 | 58, 76 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (𝑁 ∈ ℕ →
(((♯‘𝑥) =
(𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
78 | 77 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
79 | 78 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
80 | 79 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) →
(((♯‘𝑥) =
(𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
81 | 80 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((♯‘𝑥)
= (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
82 | 81 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
83 | 57, 82 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
84 | 83 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
85 | 84 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
86 | 56, 85 | sylbid 239 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
87 | 86 | ralrimiv 3106 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))) |
88 | 38, 87 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
89 | 88 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
90 | 37, 89 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
91 | 90 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
92 | 91 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
93 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣𝑋 |
94 | | nfmpo1 7333 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑣(𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2)
↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
95 | 9, 94 | nfcxfr 2904 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣𝐻 |
96 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣(𝑁 + 2) |
97 | 93, 95, 96 | nfov 7285 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑣(𝑋𝐻(𝑁 + 2)) |
98 | 97 | reuccatpfxs1 14388 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (♯‘𝑢)))) |
99 | 92, 98 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (♯‘𝑢)))) |
100 | 99 | imp 406 |
. . . . . . . . 9
⊢ ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (♯‘𝑢))) |
101 | 31 | simp3d 1142 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → (♯‘𝑢) = (𝑁 + 1)) |
102 | 101 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑁 + 1) = (♯‘𝑢)) |
103 | 102 | ad4antr 728 |
. . . . . . . . . . . 12
⊢
(((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑁 + 1) = (♯‘𝑢)) |
104 | 103 | oveq2d 7271 |
. . . . . . . . . . 11
⊢
(((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (♯‘𝑢))) |
105 | 104 | eqeq2d 2749 |
. . . . . . . . . 10
⊢
(((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑢 = (𝑥 prefix (𝑁 + 1)) ↔ 𝑢 = (𝑥 prefix (♯‘𝑢)))) |
106 | 105 | reubidva 3314 |
. . . . . . . . 9
⊢ ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) → (∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (𝑁 + 1)) ↔ ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (♯‘𝑢)))) |
107 | 100, 106 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (𝑁 + 1))) |
108 | 107 | exp31 419 |
. . . . . . 7
⊢ ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (𝑁 + 1))))) |
109 | 108 | com12 32 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (𝑁 + 1))))) |
110 | 30, 109 | sylbid 239 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (𝑁 + 1))))) |
111 | 110 | imp 406 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (𝑁 + 1)))) |
112 | 20, 111 | mpd 15 |
. . 3
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (𝑁 + 1))) |
113 | 112 | ralrimiva 3107 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∀𝑢 ∈ (𝑋𝑄𝑁)∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (𝑁 + 1))) |
114 | 10 | f1ompt 6967 |
. 2
⊢ (𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁) ↔ (∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 prefix (𝑁 + 1)) ∈ (𝑋𝑄𝑁) ∧ ∀𝑢 ∈ (𝑋𝑄𝑁)∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 prefix (𝑁 + 1)))) |
115 | 18, 113, 114 | sylanbrc 582 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁)) |