MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk2lem2f1o Structured version   Visualization version   GIF version

Theorem numclwlk2lem2f1o 27555
Description: 𝑅 is a 1-1 onto function. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Proof shortened by AV, 17-Mar-2022.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
numclwwlk.r 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
Assertion
Ref Expression
numclwlk2lem2f1o ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑥,𝐺,𝑤   𝑥,𝐻   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑋,𝑣
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑅(𝑥,𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)

Proof of Theorem numclwlk2lem2f1o
Dummy variables 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2868 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))))
2 fveq2 6404 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑅𝑦) = (𝑅𝑥))
3 oveq1 6877 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 substr ⟨0, (𝑁 + 1)⟩) = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
42, 3eqeq12d 2821 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩) ↔ (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
51, 4imbi12d 335 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩)) ↔ (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
65imbi2d 331 . . . . . . 7 (𝑦 = 𝑥 → (((𝑋𝑉𝑁 ∈ ℕ) → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩))) ↔ ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))))
7 numclwwlk.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
8 numclwwlk.q . . . . . . . 8 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
9 numclwwlk.h . . . . . . . 8 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
10 numclwwlk.r . . . . . . . 8 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
117, 8, 9, 10numclwlk2lem2fv 27554 . . . . . . 7 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩)))
126, 11chvarv 2437 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
13123adant1 1153 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
1413imp 395 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
157, 8, 9, 10numclwlk2lem2f 27553 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
1615ffvelrnda 6577 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅𝑥) ∈ (𝑋𝑄𝑁))
1714, 16eqeltrrd 2886 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
1817ralrimiva 3154 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
197, 8, 9numclwwlk2lem1 27552 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
2019imp 395 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)))
217, 8numclwwlkovq 27550 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
2221eleq2d 2871 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ 𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
23223adant1 1153 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ 𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
24 fveq1 6403 . . . . . . . . . 10 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
2524eqeq1d 2808 . . . . . . . . 9 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑋 ↔ (𝑢‘0) = 𝑋))
26 fveq2 6404 . . . . . . . . . 10 (𝑤 = 𝑢 → (lastS‘𝑤) = (lastS‘𝑢))
2726neeq1d 3037 . . . . . . . . 9 (𝑤 = 𝑢 → ((lastS‘𝑤) ≠ 𝑋 ↔ (lastS‘𝑢) ≠ 𝑋))
2825, 27anbi12d 618 . . . . . . . 8 (𝑤 = 𝑢 → (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋) ↔ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)))
2928elrab 3559 . . . . . . 7 (𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ↔ (𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)))
3023, 29syl6bb 278 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ (𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋))))
31 wwlknbp1 26961 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1)))
32 3simpc 1175 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1)) → (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1)))
3331, 32syl 17 . . . . . . . . . . . . . . 15 (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1)))
347wrdeqi 13535 . . . . . . . . . . . . . . . . 17 Word 𝑉 = Word (Vtx‘𝐺)
3534eleq2i 2877 . . . . . . . . . . . . . . . 16 (𝑢 ∈ Word 𝑉𝑢 ∈ Word (Vtx‘𝐺))
3635anbi1i 612 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ↔ (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1)))
3733, 36sylibr 225 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)))
38 simpll 774 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → 𝑢 ∈ Word 𝑉)
39 nnnn0 11562 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
40 2nn 11458 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 2 ∈ ℕ)
4241nnzd 11743 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 2 ∈ ℤ)
43 nn0pzuz 11959 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁 + 2) ∈ (ℤ‘2))
4439, 42, 43syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘2))
459numclwwlkovh 27549 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
4644, 45sylan2 582 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
4746eleq2d 2871 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
48 fveq1 6403 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
4948eqeq1d 2808 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋))
50 fveq1 6403 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2)))
5150, 48neeq12d 3039 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))
5249, 51anbi12d 618 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
5352elrab 3559 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
5447, 53syl6bb 278 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
55543adant1 1153 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
5655adantl 469 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
577clwwlknbp 27179 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)))
58 lencl 13531 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ Word 𝑉 → (♯‘𝑢) ∈ ℕ0)
59 simprr 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉)
60 df-2 11360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 = (1 + 1)
6160a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ → 2 = (1 + 1))
6261oveq2d 6886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℕ → (𝑁 + 2) = (𝑁 + (1 + 1)))
63 nncn 11309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
64 1cnd 10316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ → 1 ∈ ℂ)
6563, 64, 64addassd 10343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
6662, 65eqtr4d 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → (𝑁 + 2) = ((𝑁 + 1) + 1))
6766adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 2) = ((𝑁 + 1) + 1))
6867eqeq2d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → ((♯‘𝑥) = (𝑁 + 2) ↔ (♯‘𝑥) = ((𝑁 + 1) + 1)))
6968biimpcd 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((♯‘𝑥) = (𝑁 + 2) → ((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = ((𝑁 + 1) + 1)))
7069adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = ((𝑁 + 1) + 1)))
7170impcom 396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (♯‘𝑥) = ((𝑁 + 1) + 1))
72 oveq1 6877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑢) = (𝑁 + 1) → ((♯‘𝑢) + 1) = ((𝑁 + 1) + 1))
7372ad3antlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((♯‘𝑢) + 1) = ((𝑁 + 1) + 1))
7471, 73eqtr4d 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (♯‘𝑥) = ((♯‘𝑢) + 1))
7559, 74jca 503 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))
7675exp31 408 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
7758, 76sylan 571 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
7877com12 32 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
79783ad2ant3 1158 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
8079impcom 396 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8180com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8281ancoms 448 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8357, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8483adantr 468 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8584com12 32 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8656, 85sylbid 231 . . . . . . . . . . . . . . . . 17 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8786ralrimiv 3153 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))
8838, 87jca 503 . . . . . . . . . . . . . . 15 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8988ex 399 . . . . . . . . . . . . . 14 ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
9037, 89syl 17 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑁 WWalksN 𝐺) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
9190adantr 468 . . . . . . . . . . . 12 ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
9291imp 395 . . . . . . . . . . 11 (((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
93 nfcv 2948 . . . . . . . . . . . . 13 𝑣𝑋
94 nfmpt21 6948 . . . . . . . . . . . . . 14 𝑣(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
959, 94nfcxfr 2946 . . . . . . . . . . . . 13 𝑣𝐻
96 nfcv 2948 . . . . . . . . . . . . 13 𝑣(𝑁 + 2)
9793, 95, 96nfov 6900 . . . . . . . . . . . 12 𝑣(𝑋𝐻(𝑁 + 2))
9897reuccats1 13700 . . . . . . . . . . 11 ((𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (♯‘𝑢)⟩)))
9992, 98syl 17 . . . . . . . . . 10 (((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (♯‘𝑢)⟩)))
10099imp 395 . . . . . . . . 9 ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (♯‘𝑢)⟩))
10131simp3d 1167 . . . . . . . . . . . . . . 15 (𝑢 ∈ (𝑁 WWalksN 𝐺) → (♯‘𝑢) = (𝑁 + 1))
102101eqcomd 2812 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑁 + 1) = (♯‘𝑢))
103102ad4antr 715 . . . . . . . . . . . . 13 (((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑁 + 1) = (♯‘𝑢))
104103opeq2d 4602 . . . . . . . . . . . 12 (((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ⟨0, (𝑁 + 1)⟩ = ⟨0, (♯‘𝑢)⟩)
105104oveq2d 6886 . . . . . . . . . . 11 (((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) = (𝑥 substr ⟨0, (♯‘𝑢)⟩))
106105eqeq2d 2816 . . . . . . . . . 10 (((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) ↔ 𝑢 = (𝑥 substr ⟨0, (♯‘𝑢)⟩)))
107106reubidva 3314 . . . . . . . . 9 ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) → (∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) ↔ ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (♯‘𝑢)⟩)))
108100, 107mpbird 248 . . . . . . . 8 ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
109108exp31 408 . . . . . . 7 ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
110109com12 32 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
11130, 110sylbid 231 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
112111imp 395 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
11320, 112mpd 15 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
114113ralrimiva 3154 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ∀𝑢 ∈ (𝑋𝑄𝑁)∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
11510f1ompt 6599 . 2 (𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁) ↔ (∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ∧ ∀𝑢 ∈ (𝑋𝑄𝑁)∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
11618, 114, 115sylanbrc 574 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wral 3096  ∃!wreu 3098  {crab 3100  cop 4376  cmpt 4923  1-1-ontowf1o 6096  cfv 6097  (class class class)co 6870  cmpt2 6872  0cc0 10217  1c1 10218   + caddc 10220  cmin 10547  cn 11301  2c2 11352  0cn0 11555  cz 11639  cuz 11900  chash 13333  Word cword 13498  lastSclsw 13499   ++ cconcat 13500  ⟨“cs1 13501   substr csubstr 13502  Vtxcvtx 26084   WWalksN cwwlksn 26943   ClWWalksN cclwwlkn 27163  ClWWalksNOncclwwlknon 27248   FriendGraph cfrgr 27427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-oadd 7796  df-er 7975  df-map 8090  df-pm 8091  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-card 9044  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-2 11360  df-n0 11556  df-xnn0 11626  df-z 11640  df-uz 11901  df-rp 12043  df-fz 12546  df-fzo 12686  df-hash 13334  df-word 13506  df-lsw 13507  df-concat 13508  df-s1 13509  df-substr 13510  df-wwlks 26947  df-wwlksn 26948  df-clwwlk 27121  df-clwwlkn 27165  df-clwwlknon 27249  df-frgr 27428
This theorem is referenced by:  numclwwlk2lem3  27556
  Copyright terms: Public domain W3C validator