Step | Hyp | Ref
| Expression |
1 | | eleq1w 2816 |
. . . . . . . . 9
β’ (π¦ = π₯ β (π¦ β (ππ»(π + 2)) β π₯ β (ππ»(π + 2)))) |
2 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π¦ = π₯ β (π
βπ¦) = (π
βπ₯)) |
3 | | oveq1 7412 |
. . . . . . . . . 10
β’ (π¦ = π₯ β (π¦ prefix (π + 1)) = (π₯ prefix (π + 1))) |
4 | 2, 3 | eqeq12d 2748 |
. . . . . . . . 9
β’ (π¦ = π₯ β ((π
βπ¦) = (π¦ prefix (π + 1)) β (π
βπ₯) = (π₯ prefix (π + 1)))) |
5 | 1, 4 | imbi12d 344 |
. . . . . . . 8
β’ (π¦ = π₯ β ((π¦ β (ππ»(π + 2)) β (π
βπ¦) = (π¦ prefix (π + 1))) β (π₯ β (ππ»(π + 2)) β (π
βπ₯) = (π₯ prefix (π + 1))))) |
6 | 5 | imbi2d 340 |
. . . . . . 7
β’ (π¦ = π₯ β (((π β π β§ π β β) β (π¦ β (ππ»(π + 2)) β (π
βπ¦) = (π¦ prefix (π + 1)))) β ((π β π β§ π β β) β (π₯ β (ππ»(π + 2)) β (π
βπ₯) = (π₯ prefix (π + 1)))))) |
7 | | numclwwlk.v |
. . . . . . . 8
β’ π = (VtxβπΊ) |
8 | | numclwwlk.q |
. . . . . . . 8
β’ π = (π£ β π, π β β β¦ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)}) |
9 | | numclwwlk.h |
. . . . . . . 8
β’ π» = (π£ β π, π β (β€β₯β2)
β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π£}) |
10 | | numclwwlk.r |
. . . . . . . 8
β’ π
= (π₯ β (ππ»(π + 2)) β¦ (π₯ prefix (π + 1))) |
11 | 7, 8, 9, 10 | numclwlk2lem2fv 29620 |
. . . . . . 7
β’ ((π β π β§ π β β) β (π¦ β (ππ»(π + 2)) β (π
βπ¦) = (π¦ prefix (π + 1)))) |
12 | 6, 11 | chvarvv 2002 |
. . . . . 6
β’ ((π β π β§ π β β) β (π₯ β (ππ»(π + 2)) β (π
βπ₯) = (π₯ prefix (π + 1)))) |
13 | 12 | 3adant1 1130 |
. . . . 5
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β (π₯ β (ππ»(π + 2)) β (π
βπ₯) = (π₯ prefix (π + 1)))) |
14 | 13 | imp 407 |
. . . 4
β’ (((πΊ β FriendGraph β§ π β π β§ π β β) β§ π₯ β (ππ»(π + 2))) β (π
βπ₯) = (π₯ prefix (π + 1))) |
15 | 7, 8, 9, 10 | numclwlk2lem2f 29619 |
. . . . 5
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β π
:(ππ»(π + 2))βΆ(πππ)) |
16 | 15 | ffvelcdmda 7083 |
. . . 4
β’ (((πΊ β FriendGraph β§ π β π β§ π β β) β§ π₯ β (ππ»(π + 2))) β (π
βπ₯) β (πππ)) |
17 | 14, 16 | eqeltrrd 2834 |
. . 3
β’ (((πΊ β FriendGraph β§ π β π β§ π β β) β§ π₯ β (ππ»(π + 2))) β (π₯ prefix (π + 1)) β (πππ)) |
18 | 17 | ralrimiva 3146 |
. 2
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β βπ₯ β (ππ»(π + 2))(π₯ prefix (π + 1)) β (πππ)) |
19 | 7, 8, 9 | numclwwlk2lem1 29618 |
. . . . 5
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β (π’ β (πππ) β β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2)))) |
20 | 19 | imp 407 |
. . . 4
β’ (((πΊ β FriendGraph β§ π β π β§ π β β) β§ π’ β (πππ)) β β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2))) |
21 | 7, 8 | numclwwlkovq 29616 |
. . . . . . . . 9
β’ ((π β π β§ π β β) β (πππ) = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) |
22 | 21 | eleq2d 2819 |
. . . . . . . 8
β’ ((π β π β§ π β β) β (π’ β (πππ) β π’ β {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)})) |
23 | 22 | 3adant1 1130 |
. . . . . . 7
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β (π’ β (πππ) β π’ β {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)})) |
24 | | fveq1 6887 |
. . . . . . . . . 10
β’ (π€ = π’ β (π€β0) = (π’β0)) |
25 | 24 | eqeq1d 2734 |
. . . . . . . . 9
β’ (π€ = π’ β ((π€β0) = π β (π’β0) = π)) |
26 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π€ = π’ β (lastSβπ€) = (lastSβπ’)) |
27 | 26 | neeq1d 3000 |
. . . . . . . . 9
β’ (π€ = π’ β ((lastSβπ€) β π β (lastSβπ’) β π)) |
28 | 25, 27 | anbi12d 631 |
. . . . . . . 8
β’ (π€ = π’ β (((π€β0) = π β§ (lastSβπ€) β π) β ((π’β0) = π β§ (lastSβπ’) β π))) |
29 | 28 | elrab 3682 |
. . . . . . 7
β’ (π’ β {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)} β (π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π))) |
30 | 23, 29 | bitrdi 286 |
. . . . . 6
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β (π’ β (πππ) β (π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)))) |
31 | | wwlknbp1 29087 |
. . . . . . . . . . . . . . . 16
β’ (π’ β (π WWalksN πΊ) β (π β β0 β§ π’ β Word (VtxβπΊ) β§ (β―βπ’) = (π + 1))) |
32 | | 3simpc 1150 |
. . . . . . . . . . . . . . . 16
β’ ((π β β0
β§ π’ β Word
(VtxβπΊ) β§
(β―βπ’) = (π + 1)) β (π’ β Word (VtxβπΊ) β§ (β―βπ’) = (π + 1))) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π’ β (π WWalksN πΊ) β (π’ β Word (VtxβπΊ) β§ (β―βπ’) = (π + 1))) |
34 | 7 | wrdeqi 14483 |
. . . . . . . . . . . . . . . . 17
β’ Word
π = Word (VtxβπΊ) |
35 | 34 | eleq2i 2825 |
. . . . . . . . . . . . . . . 16
β’ (π’ β Word π β π’ β Word (VtxβπΊ)) |
36 | 35 | anbi1i 624 |
. . . . . . . . . . . . . . 15
β’ ((π’ β Word π β§ (β―βπ’) = (π + 1)) β (π’ β Word (VtxβπΊ) β§ (β―βπ’) = (π + 1))) |
37 | 33, 36 | sylibr 233 |
. . . . . . . . . . . . . 14
β’ (π’ β (π WWalksN πΊ) β (π’ β Word π β§ (β―βπ’) = (π + 1))) |
38 | | simpll 765 |
. . . . . . . . . . . . . . . 16
β’ (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β π’ β Word π) |
39 | | nnnn0 12475 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π β β β π β
β0) |
40 | | 2nn 12281 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ 2 β
β |
41 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π β β β 2 β
β) |
42 | 41 | nnzd 12581 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π β β β 2 β
β€) |
43 | | nn0pzuz 12885 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π β β0
β§ 2 β β€) β (π + 2) β
(β€β₯β2)) |
44 | 39, 42, 43 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β β β (π + 2) β
(β€β₯β2)) |
45 | 9 | numclwwlkovh 29615 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β π β§ (π + 2) β
(β€β₯β2)) β (ππ»(π + 2)) = {π€ β ((π + 2) ClWWalksN πΊ) β£ ((π€β0) = π β§ (π€β((π + 2) β 2)) β (π€β0))}) |
46 | 44, 45 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β π β§ π β β) β (ππ»(π + 2)) = {π€ β ((π + 2) ClWWalksN πΊ) β£ ((π€β0) = π β§ (π€β((π + 2) β 2)) β (π€β0))}) |
47 | 46 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β π β§ π β β) β (π₯ β (ππ»(π + 2)) β π₯ β {π€ β ((π + 2) ClWWalksN πΊ) β£ ((π€β0) = π β§ (π€β((π + 2) β 2)) β (π€β0))})) |
48 | | fveq1 6887 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π€ = π₯ β (π€β0) = (π₯β0)) |
49 | 48 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π€ = π₯ β ((π€β0) = π β (π₯β0) = π)) |
50 | | fveq1 6887 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π€ = π₯ β (π€β((π + 2) β 2)) = (π₯β((π + 2) β 2))) |
51 | 50, 48 | neeq12d 3002 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π€ = π₯ β ((π€β((π + 2) β 2)) β (π€β0) β (π₯β((π + 2) β 2)) β (π₯β0))) |
52 | 49, 51 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π€ = π₯ β (((π€β0) = π β§ (π€β((π + 2) β 2)) β (π€β0)) β ((π₯β0) = π β§ (π₯β((π + 2) β 2)) β (π₯β0)))) |
53 | 52 | elrab 3682 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π₯ β {π€ β ((π + 2) ClWWalksN πΊ) β£ ((π€β0) = π β§ (π€β((π + 2) β 2)) β (π€β0))} β (π₯ β ((π + 2) ClWWalksN πΊ) β§ ((π₯β0) = π β§ (π₯β((π + 2) β 2)) β (π₯β0)))) |
54 | 47, 53 | bitrdi 286 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β π β§ π β β) β (π₯ β (ππ»(π + 2)) β (π₯ β ((π + 2) ClWWalksN πΊ) β§ ((π₯β0) = π β§ (π₯β((π + 2) β 2)) β (π₯β0))))) |
55 | 54 | 3adant1 1130 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β (π₯ β (ππ»(π + 2)) β (π₯ β ((π + 2) ClWWalksN πΊ) β§ ((π₯β0) = π β§ (π₯β((π + 2) β 2)) β (π₯β0))))) |
56 | 55 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
β’ (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β (π₯ β (ππ»(π + 2)) β (π₯ β ((π + 2) ClWWalksN πΊ) β§ ((π₯β0) = π β§ (π₯β((π + 2) β 2)) β (π₯β0))))) |
57 | 7 | clwwlknbp 29277 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π₯ β ((π + 2) ClWWalksN πΊ) β (π₯ β Word π β§ (β―βπ₯) = (π + 2))) |
58 | | lencl 14479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π’ β Word π β (β―βπ’) β
β0) |
59 | | simprr 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’
(((((β―βπ’) β β0 β§
(β―βπ’) = (π + 1)) β§ π β β) β§ ((β―βπ₯) = (π + 2) β§ π₯ β Word π)) β π₯ β Word π) |
60 | | df-2 12271 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
β’ 2 = (1 +
1) |
61 | 60 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ (π β β β 2 = (1 +
1)) |
62 | 61 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (π β β β (π + 2) = (π + (1 + 1))) |
63 | | nncn 12216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ (π β β β π β
β) |
64 | | 1cnd 11205 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ (π β β β 1 β
β) |
65 | 63, 64, 64 | addassd 11232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (π β β β ((π + 1) + 1) = (π + (1 + 1))) |
66 | 62, 65 | eqtr4d 2775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (π β β β (π + 2) = ((π + 1) + 1)) |
67 | 66 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
((((β―βπ’)
β β0 β§ (β―βπ’) = (π + 1)) β§ π β β) β (π + 2) = ((π + 1) + 1)) |
68 | 67 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
((((β―βπ’)
β β0 β§ (β―βπ’) = (π + 1)) β§ π β β) β
((β―βπ₯) = (π + 2) β
(β―βπ₯) = ((π + 1) + 1))) |
69 | 68 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
((β―βπ₯) =
(π + 2) β
((((β―βπ’) β
β0 β§ (β―βπ’) = (π + 1)) β§ π β β) β (β―βπ₯) = ((π + 1) + 1))) |
70 | 69 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’
(((β―βπ₯)
= (π + 2) β§ π₯ β Word π) β ((((β―βπ’) β β0
β§ (β―βπ’) =
(π + 1)) β§ π β β) β
(β―βπ₯) = ((π + 1) + 1))) |
71 | 70 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
(((((β―βπ’) β β0 β§
(β―βπ’) = (π + 1)) β§ π β β) β§ ((β―βπ₯) = (π + 2) β§ π₯ β Word π)) β (β―βπ₯) = ((π + 1) + 1)) |
72 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’
((β―βπ’) =
(π + 1) β
((β―βπ’) + 1) =
((π + 1) +
1)) |
73 | 72 | ad3antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
(((((β―βπ’) β β0 β§
(β―βπ’) = (π + 1)) β§ π β β) β§ ((β―βπ₯) = (π + 2) β§ π₯ β Word π)) β ((β―βπ’) + 1) = ((π + 1) + 1)) |
74 | 71, 73 | eqtr4d 2775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’
(((((β―βπ’) β β0 β§
(β―βπ’) = (π + 1)) β§ π β β) β§ ((β―βπ₯) = (π + 2) β§ π₯ β Word π)) β (β―βπ₯) = ((β―βπ’) + 1)) |
75 | 59, 74 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((β―βπ’) β β0 β§
(β―βπ’) = (π + 1)) β§ π β β) β§ ((β―βπ₯) = (π + 2) β§ π₯ β Word π)) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1))) |
76 | 75 | exp31 420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’
(((β―βπ’)
β β0 β§ (β―βπ’) = (π + 1)) β (π β β β
(((β―βπ₯) =
(π + 2) β§ π₯ β Word π) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1))))) |
77 | 58, 76 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π’ β Word π β§ (β―βπ’) = (π + 1)) β (π β β β
(((β―βπ₯) =
(π + 2) β§ π₯ β Word π) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1))))) |
78 | 77 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π β β β ((π’ β Word π β§ (β―βπ’) = (π + 1)) β (((β―βπ₯) = (π + 2) β§ π₯ β Word π) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1))))) |
79 | 78 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β ((π’ β Word π β§ (β―βπ’) = (π + 1)) β (((β―βπ₯) = (π + 2) β§ π₯ β Word π) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1))))) |
80 | 79 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β
(((β―βπ₯) =
(π + 2) β§ π₯ β Word π) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1)))) |
81 | 80 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((β―βπ₯)
= (π + 2) β§ π₯ β Word π) β (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1)))) |
82 | 81 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π₯ β Word π β§ (β―βπ₯) = (π + 2)) β (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1)))) |
83 | 57, 82 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ β ((π + 2) ClWWalksN πΊ) β (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1)))) |
84 | 83 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π₯ β ((π + 2) ClWWalksN πΊ) β§ ((π₯β0) = π β§ (π₯β((π + 2) β 2)) β (π₯β0))) β (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1)))) |
85 | 84 | com12 32 |
. . . . . . . . . . . . . . . . . 18
β’ (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β ((π₯ β ((π + 2) ClWWalksN πΊ) β§ ((π₯β0) = π β§ (π₯β((π + 2) β 2)) β (π₯β0))) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1)))) |
86 | 56, 85 | sylbid 239 |
. . . . . . . . . . . . . . . . 17
β’ (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β (π₯ β (ππ»(π + 2)) β (π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1)))) |
87 | 86 | ralrimiv 3145 |
. . . . . . . . . . . . . . . 16
β’ (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β βπ₯ β (ππ»(π + 2))(π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1))) |
88 | 38, 87 | jca 512 |
. . . . . . . . . . . . . . 15
β’ (((π’ β Word π β§ (β―βπ’) = (π + 1)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β (π’ β Word π β§ βπ₯ β (ππ»(π + 2))(π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1)))) |
89 | 88 | ex 413 |
. . . . . . . . . . . . . 14
β’ ((π’ β Word π β§ (β―βπ’) = (π + 1)) β ((πΊ β FriendGraph β§ π β π β§ π β β) β (π’ β Word π β§ βπ₯ β (ππ»(π + 2))(π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1))))) |
90 | 37, 89 | syl 17 |
. . . . . . . . . . . . 13
β’ (π’ β (π WWalksN πΊ) β ((πΊ β FriendGraph β§ π β π β§ π β β) β (π’ β Word π β§ βπ₯ β (ππ»(π + 2))(π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1))))) |
91 | 90 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β ((πΊ β FriendGraph β§ π β π β§ π β β) β (π’ β Word π β§ βπ₯ β (ππ»(π + 2))(π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1))))) |
92 | 91 | imp 407 |
. . . . . . . . . . 11
β’ (((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β (π’ β Word π β§ βπ₯ β (ππ»(π + 2))(π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1)))) |
93 | | nfcv 2903 |
. . . . . . . . . . . . 13
β’
β²π£π |
94 | | nfmpo1 7485 |
. . . . . . . . . . . . . 14
β’
β²π£(π£ β π, π β (β€β₯β2)
β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π£}) |
95 | 9, 94 | nfcxfr 2901 |
. . . . . . . . . . . . 13
β’
β²π£π» |
96 | | nfcv 2903 |
. . . . . . . . . . . . 13
β’
β²π£(π + 2) |
97 | 93, 95, 96 | nfov 7435 |
. . . . . . . . . . . 12
β’
β²π£(ππ»(π + 2)) |
98 | 97 | reuccatpfxs1 14693 |
. . . . . . . . . . 11
β’ ((π’ β Word π β§ βπ₯ β (ππ»(π + 2))(π₯ β Word π β§ (β―βπ₯) = ((β―βπ’) + 1))) β (β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2)) β β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (β―βπ’)))) |
99 | 92, 98 | syl 17 |
. . . . . . . . . 10
β’ (((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β (β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2)) β β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (β―βπ’)))) |
100 | 99 | imp 407 |
. . . . . . . . 9
β’ ((((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β§ β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2))) β β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (β―βπ’))) |
101 | 31 | simp3d 1144 |
. . . . . . . . . . . . . 14
β’ (π’ β (π WWalksN πΊ) β (β―βπ’) = (π + 1)) |
102 | 101 | eqcomd 2738 |
. . . . . . . . . . . . 13
β’ (π’ β (π WWalksN πΊ) β (π + 1) = (β―βπ’)) |
103 | 102 | ad4antr 730 |
. . . . . . . . . . . 12
β’
(((((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β§ β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2))) β§ π₯ β (ππ»(π + 2))) β (π + 1) = (β―βπ’)) |
104 | 103 | oveq2d 7421 |
. . . . . . . . . . 11
β’
(((((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β§ β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2))) β§ π₯ β (ππ»(π + 2))) β (π₯ prefix (π + 1)) = (π₯ prefix (β―βπ’))) |
105 | 104 | eqeq2d 2743 |
. . . . . . . . . 10
β’
(((((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β§ β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2))) β§ π₯ β (ππ»(π + 2))) β (π’ = (π₯ prefix (π + 1)) β π’ = (π₯ prefix (β―βπ’)))) |
106 | 105 | reubidva 3392 |
. . . . . . . . 9
β’ ((((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β§ β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2))) β (β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (π + 1)) β β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (β―βπ’)))) |
107 | 100, 106 | mpbird 256 |
. . . . . . . 8
β’ ((((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β§ (πΊ β FriendGraph β§ π β π β§ π β β)) β§ β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2))) β β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (π + 1))) |
108 | 107 | exp31 420 |
. . . . . . 7
β’ ((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β ((πΊ β FriendGraph β§ π β π β§ π β β) β (β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2)) β β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (π + 1))))) |
109 | 108 | com12 32 |
. . . . . 6
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β ((π’ β (π WWalksN πΊ) β§ ((π’β0) = π β§ (lastSβπ’) β π)) β (β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2)) β β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (π + 1))))) |
110 | 30, 109 | sylbid 239 |
. . . . 5
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β (π’ β (πππ) β (β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2)) β β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (π + 1))))) |
111 | 110 | imp 407 |
. . . 4
β’ (((πΊ β FriendGraph β§ π β π β§ π β β) β§ π’ β (πππ)) β (β!π£ β π (π’ ++ β¨βπ£ββ©) β (ππ»(π + 2)) β β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (π + 1)))) |
112 | 20, 111 | mpd 15 |
. . 3
β’ (((πΊ β FriendGraph β§ π β π β§ π β β) β§ π’ β (πππ)) β β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (π + 1))) |
113 | 112 | ralrimiva 3146 |
. 2
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β βπ’ β (πππ)β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (π + 1))) |
114 | 10 | f1ompt 7107 |
. 2
β’ (π
:(ππ»(π + 2))β1-1-ontoβ(πππ) β (βπ₯ β (ππ»(π + 2))(π₯ prefix (π + 1)) β (πππ) β§ βπ’ β (πππ)β!π₯ β (ππ»(π + 2))π’ = (π₯ prefix (π + 1)))) |
115 | 18, 113, 114 | sylanbrc 583 |
1
β’ ((πΊ β FriendGraph β§ π β π β§ π β β) β π
:(ππ»(π + 2))β1-1-ontoβ(πππ)) |