Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpodv2 | Structured version Visualization version GIF version |
Description: Alternate deduction version of ovmpo 7487, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
ovmpodv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ovmpodv2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) |
ovmpodv2.3 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) |
ovmpodv2.4 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
Ref | Expression |
---|---|
ovmpodv2 | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2737 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
2 | ovmpodv2.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
3 | ovmpodv2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) | |
4 | ovmpodv2.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) | |
5 | ovmpodv2.4 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
6 | 5 | eqeq2d 2747 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑅 ↔ (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
7 | 6 | biimpd 228 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑅 → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
8 | nfmpo1 7409 | . . . 4 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
9 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
10 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
11 | 9, 8, 10 | nfov 7359 | . . . . 5 ⊢ Ⅎ𝑥(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) |
12 | 11 | nfeq1 2919 | . . . 4 ⊢ Ⅎ𝑥(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆 |
13 | nfmpo2 7410 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
14 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
15 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
16 | 14, 13, 15 | nfov 7359 | . . . . 5 ⊢ Ⅎ𝑦(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) |
17 | 16 | nfeq1 2919 | . . . 4 ⊢ Ⅎ𝑦(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆 |
18 | 2, 3, 4, 7, 8, 12, 13, 17 | ovmpodf 7483 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
19 | 1, 18 | mpd 15 | . 2 ⊢ (𝜑 → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆) |
20 | oveq 7335 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵)) | |
21 | 20 | eqeq1d 2738 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → ((𝐴𝐹𝐵) = 𝑆 ↔ (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
22 | 19, 21 | syl5ibrcom 246 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 (class class class)co 7329 ∈ cmpo 7331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6425 df-fun 6475 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 |
This theorem is referenced by: coaval 17872 xpcco 17989 marrepval 21809 marrepeval 21810 marepveval 21815 submaval 21828 submaeval 21829 minmar1val 21895 minmar1eval 21896 nbgrval 27905 |
Copyright terms: Public domain | W3C validator |