| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpodv2 | Structured version Visualization version GIF version | ||
| Description: Alternate deduction version of ovmpo 7594, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovmpodv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| ovmpodv2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) |
| ovmpodv2.3 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) |
| ovmpodv2.4 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
| Ref | Expression |
|---|---|
| ovmpodv2 | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2737 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
| 2 | ovmpodv2.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 3 | ovmpodv2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) | |
| 4 | ovmpodv2.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) | |
| 5 | ovmpodv2.4 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
| 6 | 5 | eqeq2d 2747 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑅 ↔ (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
| 7 | 6 | biimpd 229 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑅 → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
| 8 | nfmpo1 7514 | . . . 4 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 9 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 10 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 11 | 9, 8, 10 | nfov 7462 | . . . . 5 ⊢ Ⅎ𝑥(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) |
| 12 | 11 | nfeq1 2920 | . . . 4 ⊢ Ⅎ𝑥(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆 |
| 13 | nfmpo2 7515 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 14 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 15 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
| 16 | 14, 13, 15 | nfov 7462 | . . . . 5 ⊢ Ⅎ𝑦(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) |
| 17 | 16 | nfeq1 2920 | . . . 4 ⊢ Ⅎ𝑦(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆 |
| 18 | 2, 3, 4, 7, 8, 12, 13, 17 | ovmpodf 7590 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
| 19 | 1, 18 | mpd 15 | . 2 ⊢ (𝜑 → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆) |
| 20 | oveq 7438 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵)) | |
| 21 | 20 | eqeq1d 2738 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → ((𝐴𝐹𝐵) = 𝑆 ↔ (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
| 22 | 19, 21 | syl5ibrcom 247 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7432 ∈ cmpo 7434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 |
| This theorem is referenced by: coaval 18114 xpcco 18229 marrepval 22569 marrepeval 22570 marepveval 22575 submaval 22588 submaeval 22589 minmar1val 22655 minmar1eval 22656 nbgrval 29354 clnbgrval 47814 |
| Copyright terms: Public domain | W3C validator |