MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2 Structured version   Visualization version   GIF version

Theorem gsum2d2 19087
Description: Write a group sum over a two-dimensional region as a double sum. Note that 𝐶(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
Assertion
Ref Expression
gsum2d2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
Distinct variable groups:   𝑗,𝑘,𝐵   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsum2d2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d2.z . . 3 0 = (0g𝐺)
3 gsum2d2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
5 snex 5297 . . . . . 6 {𝑗} ∈ V
6 gsum2d2.r . . . . . 6 ((𝜑𝑗𝐴) → 𝐶𝑊)
7 xpexg 7453 . . . . . 6 (({𝑗} ∈ V ∧ 𝐶𝑊) → ({𝑗} × 𝐶) ∈ V)
85, 6, 7sylancr 590 . . . . 5 ((𝜑𝑗𝐴) → ({𝑗} × 𝐶) ∈ V)
98ralrimiva 3149 . . . 4 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
10 iunexg 7646 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
114, 9, 10syl2anc 587 . . 3 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
12 relxp 5537 . . . . . 6 Rel ({𝑗} × 𝐶)
1312rgenw 3118 . . . . 5 𝑗𝐴 Rel ({𝑗} × 𝐶)
14 reliun 5653 . . . . 5 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
1513, 14mpbir 234 . . . 4 Rel 𝑗𝐴 ({𝑗} × 𝐶)
1615a1i 11 . . 3 (𝜑 → Rel 𝑗𝐴 ({𝑗} × 𝐶))
17 vex 3444 . . . . . 6 𝑥 ∈ V
1817eldm2 5734 . . . . 5 (𝑥 ∈ dom 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
19 eliunxp 5672 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)))
20 vex 3444 . . . . . . . . . . . 12 𝑦 ∈ V
2117, 20opth1 5332 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ → 𝑥 = 𝑗)
2221ad2antrl 727 . . . . . . . . . 10 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑥 = 𝑗)
23 simprrl 780 . . . . . . . . . 10 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑗𝐴)
2422, 23eqeltrd 2890 . . . . . . . . 9 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑥𝐴)
2524ex 416 . . . . . . . 8 (𝜑 → ((⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)) → 𝑥𝐴))
2625exlimdvv 1935 . . . . . . 7 (𝜑 → (∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)) → 𝑥𝐴))
2719, 26syl5bi 245 . . . . . 6 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
2827exlimdv 1934 . . . . 5 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
2918, 28syl5bi 245 . . . 4 (𝜑 → (𝑥 ∈ dom 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
3029ssrdv 3921 . . 3 (𝜑 → dom 𝑗𝐴 ({𝑗} × 𝐶) ⊆ 𝐴)
31 gsum2d2.f . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
3231ralrimivva 3156 . . . 4 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
33 eqid 2798 . . . . 5 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
3433fmpox 7747 . . . 4 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
3532, 34sylib 221 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
36 gsum2d2.u . . . 4 (𝜑𝑈 ∈ Fin)
37 gsum2d2.n . . . 4 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
381, 2, 3, 4, 6, 31, 36, 37gsum2d2lem 19086 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
391, 2, 3, 11, 16, 4, 30, 35, 38gsum2d 19085 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))))
40 nfcv 2955 . . . . . 6 𝑗𝐺
41 nfcv 2955 . . . . . 6 𝑗 Σg
42 nfiu1 4915 . . . . . . . 8 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
43 nfcv 2955 . . . . . . . 8 𝑗{𝑚}
4442, 43nfima 5904 . . . . . . 7 𝑗( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚})
45 nfcv 2955 . . . . . . . 8 𝑗𝑚
46 nfmpo1 7213 . . . . . . . 8 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
47 nfcv 2955 . . . . . . . 8 𝑗𝑛
4845, 46, 47nfov 7165 . . . . . . 7 𝑗(𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)
4944, 48nfmpt 5127 . . . . . 6 𝑗(𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))
5040, 41, 49nfov 7165 . . . . 5 𝑗(𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
51 nfcv 2955 . . . . 5 𝑚(𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
52 sneq 4535 . . . . . . . 8 (𝑚 = 𝑗 → {𝑚} = {𝑗})
5352imaeq2d 5896 . . . . . . 7 (𝑚 = 𝑗 → ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) = ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}))
54 oveq1 7142 . . . . . . 7 (𝑚 = 𝑗 → (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))
5553, 54mpteq12dv 5115 . . . . . 6 (𝑚 = 𝑗 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
5655oveq2d 7151 . . . . 5 (𝑚 = 𝑗 → (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))) = (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))
5750, 51, 56cbvmpt 5131 . . . 4 (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))
58 vex 3444 . . . . . . . . . . . . . 14 𝑗 ∈ V
59 vex 3444 . . . . . . . . . . . . . 14 𝑘 ∈ V
6058, 59elimasn 5921 . . . . . . . . . . . . 13 (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
61 opeliunxp 5583 . . . . . . . . . . . . 13 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
6260, 61bitri 278 . . . . . . . . . . . 12 (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ (𝑗𝐴𝑘𝐶))
6362baib 539 . . . . . . . . . . 11 (𝑗𝐴 → (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ 𝑘𝐶))
6463eqrdv 2796 . . . . . . . . . 10 (𝑗𝐴 → ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) = 𝐶)
6564mpteq1d 5119 . . . . . . . . 9 (𝑗𝐴 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑛𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
66 nfcv 2955 . . . . . . . . . . 11 𝑘𝑗
67 nfmpo2 7214 . . . . . . . . . . 11 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
68 nfcv 2955 . . . . . . . . . . 11 𝑘𝑛
6966, 67, 68nfov 7165 . . . . . . . . . 10 𝑘(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)
70 nfcv 2955 . . . . . . . . . 10 𝑛(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
71 oveq2 7143 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
7269, 70, 71cbvmpt 5131 . . . . . . . . 9 (𝑛𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
7365, 72eqtrdi 2849 . . . . . . . 8 (𝑗𝐴 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
7473adantl 485 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
75 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑗𝐴)
76 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑘𝐶)
7733ovmpt4g 7276 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
7875, 76, 31, 77syl3anc 1368 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
7978anassrs 471 . . . . . . . 8 (((𝜑𝑗𝐴) ∧ 𝑘𝐶) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
8079mpteq2dva 5125 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)) = (𝑘𝐶𝑋))
8174, 80eqtrd 2833 . . . . . 6 ((𝜑𝑗𝐴) → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶𝑋))
8281oveq2d 7151 . . . . 5 ((𝜑𝑗𝐴) → (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))) = (𝐺 Σg (𝑘𝐶𝑋)))
8382mpteq2dva 5125 . . . 4 (𝜑 → (𝑗𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋))))
8457, 83syl5eq 2845 . . 3 (𝜑 → (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋))))
8584oveq2d 7151 . 2 (𝜑 → (𝐺 Σg (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
8639, 85eqtrd 2833 1 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  Vcvv 3441  {csn 4525  cop 4531   ciun 4881   class class class wbr 5030  cmpt 5110   × cxp 5517  dom cdm 5519  cima 5522  Rel wrel 5524  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  Fincfn 8492  Basecbs 16475  0gc0g 16705   Σg cgsu 16706  CMndccmn 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900
This theorem is referenced by:  gsumcom3  19091  gsumdixp  19355  psrass1lem  20615  gsummpt2co  30733
  Copyright terms: Public domain W3C validator