MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2 Structured version   Visualization version   GIF version

Theorem gsum2d2 20006
Description: Write a group sum over a two-dimensional region as a double sum. Note that 𝐶(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
Assertion
Ref Expression
gsum2d2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
Distinct variable groups:   𝑗,𝑘,𝐵   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsum2d2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d2.z . . 3 0 = (0g𝐺)
3 gsum2d2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
5 vsnex 5439 . . . . . 6 {𝑗} ∈ V
6 gsum2d2.r . . . . . 6 ((𝜑𝑗𝐴) → 𝐶𝑊)
7 xpexg 7768 . . . . . 6 (({𝑗} ∈ V ∧ 𝐶𝑊) → ({𝑗} × 𝐶) ∈ V)
85, 6, 7sylancr 587 . . . . 5 ((𝜑𝑗𝐴) → ({𝑗} × 𝐶) ∈ V)
98ralrimiva 3143 . . . 4 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
10 iunexg 7986 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
114, 9, 10syl2anc 584 . . 3 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
12 relxp 5706 . . . . . 6 Rel ({𝑗} × 𝐶)
1312rgenw 3062 . . . . 5 𝑗𝐴 Rel ({𝑗} × 𝐶)
14 reliun 5828 . . . . 5 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
1513, 14mpbir 231 . . . 4 Rel 𝑗𝐴 ({𝑗} × 𝐶)
1615a1i 11 . . 3 (𝜑 → Rel 𝑗𝐴 ({𝑗} × 𝐶))
17 vex 3481 . . . . . 6 𝑥 ∈ V
1817eldm2 5914 . . . . 5 (𝑥 ∈ dom 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
19 eliunxp 5850 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)))
20 vex 3481 . . . . . . . . . . . 12 𝑦 ∈ V
2117, 20opth1 5485 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ → 𝑥 = 𝑗)
2221ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑥 = 𝑗)
23 simprrl 781 . . . . . . . . . 10 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑗𝐴)
2422, 23eqeltrd 2838 . . . . . . . . 9 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑥𝐴)
2524ex 412 . . . . . . . 8 (𝜑 → ((⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)) → 𝑥𝐴))
2625exlimdvv 1931 . . . . . . 7 (𝜑 → (∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)) → 𝑥𝐴))
2719, 26biimtrid 242 . . . . . 6 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
2827exlimdv 1930 . . . . 5 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
2918, 28biimtrid 242 . . . 4 (𝜑 → (𝑥 ∈ dom 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
3029ssrdv 4000 . . 3 (𝜑 → dom 𝑗𝐴 ({𝑗} × 𝐶) ⊆ 𝐴)
31 gsum2d2.f . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
3231ralrimivva 3199 . . . 4 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
33 eqid 2734 . . . . 5 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
3433fmpox 8090 . . . 4 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
3532, 34sylib 218 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
36 gsum2d2.u . . . 4 (𝜑𝑈 ∈ Fin)
37 gsum2d2.n . . . 4 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
381, 2, 3, 4, 6, 31, 36, 37gsum2d2lem 20005 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
391, 2, 3, 11, 16, 4, 30, 35, 38gsum2d 20004 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))))
40 nfcv 2902 . . . . . 6 𝑗𝐺
41 nfcv 2902 . . . . . 6 𝑗 Σg
42 nfiu1 5031 . . . . . . . 8 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
43 nfcv 2902 . . . . . . . 8 𝑗{𝑚}
4442, 43nfima 6087 . . . . . . 7 𝑗( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚})
45 nfcv 2902 . . . . . . . 8 𝑗𝑚
46 nfmpo1 7512 . . . . . . . 8 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
47 nfcv 2902 . . . . . . . 8 𝑗𝑛
4845, 46, 47nfov 7460 . . . . . . 7 𝑗(𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)
4944, 48nfmpt 5254 . . . . . 6 𝑗(𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))
5040, 41, 49nfov 7460 . . . . 5 𝑗(𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
51 nfcv 2902 . . . . 5 𝑚(𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
52 sneq 4640 . . . . . . . 8 (𝑚 = 𝑗 → {𝑚} = {𝑗})
5352imaeq2d 6079 . . . . . . 7 (𝑚 = 𝑗 → ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) = ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}))
54 oveq1 7437 . . . . . . 7 (𝑚 = 𝑗 → (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))
5553, 54mpteq12dv 5238 . . . . . 6 (𝑚 = 𝑗 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
5655oveq2d 7446 . . . . 5 (𝑚 = 𝑗 → (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))) = (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))
5750, 51, 56cbvmpt 5258 . . . 4 (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))
58 vex 3481 . . . . . . . . . . . . . 14 𝑗 ∈ V
59 vex 3481 . . . . . . . . . . . . . 14 𝑘 ∈ V
6058, 59elimasn 6109 . . . . . . . . . . . . 13 (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
61 opeliunxp 5755 . . . . . . . . . . . . 13 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
6260, 61bitri 275 . . . . . . . . . . . 12 (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ (𝑗𝐴𝑘𝐶))
6362baib 535 . . . . . . . . . . 11 (𝑗𝐴 → (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ 𝑘𝐶))
6463eqrdv 2732 . . . . . . . . . 10 (𝑗𝐴 → ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) = 𝐶)
6564mpteq1d 5242 . . . . . . . . 9 (𝑗𝐴 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑛𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
66 nfcv 2902 . . . . . . . . . . 11 𝑘𝑗
67 nfmpo2 7513 . . . . . . . . . . 11 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
68 nfcv 2902 . . . . . . . . . . 11 𝑘𝑛
6966, 67, 68nfov 7460 . . . . . . . . . 10 𝑘(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)
70 nfcv 2902 . . . . . . . . . 10 𝑛(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
71 oveq2 7438 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
7269, 70, 71cbvmpt 5258 . . . . . . . . 9 (𝑛𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
7365, 72eqtrdi 2790 . . . . . . . 8 (𝑗𝐴 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
7473adantl 481 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
75 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑗𝐴)
76 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑘𝐶)
7733ovmpt4g 7579 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
7875, 76, 31, 77syl3anc 1370 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
7978anassrs 467 . . . . . . . 8 (((𝜑𝑗𝐴) ∧ 𝑘𝐶) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
8079mpteq2dva 5247 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)) = (𝑘𝐶𝑋))
8174, 80eqtrd 2774 . . . . . 6 ((𝜑𝑗𝐴) → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶𝑋))
8281oveq2d 7446 . . . . 5 ((𝜑𝑗𝐴) → (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))) = (𝐺 Σg (𝑘𝐶𝑋)))
8382mpteq2dva 5247 . . . 4 (𝜑 → (𝑗𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋))))
8457, 83eqtrid 2786 . . 3 (𝜑 → (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋))))
8584oveq2d 7446 . 2 (𝜑 → (𝐺 Σg (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
8639, 85eqtrd 2774 1 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wex 1775  wcel 2105  wral 3058  Vcvv 3477  {csn 4630  cop 4636   ciun 4995   class class class wbr 5147  cmpt 5230   × cxp 5686  dom cdm 5688  cima 5691  Rel wrel 5693  wf 6558  cfv 6562  (class class class)co 7430  cmpo 7432  Fincfn 8983  Basecbs 17244  0gc0g 17485   Σg cgsu 17486  CMndccmn 19812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814
This theorem is referenced by:  gsumcom3  20010  gsumdixp  20332  psrass1lem  21969  gsummpt2co  33033
  Copyright terms: Public domain W3C validator