MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2 Structured version   Visualization version   GIF version

Theorem gsum2d2 19751
Description: Write a group sum over a two-dimensional region as a double sum. Note that 𝐶(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
Assertion
Ref Expression
gsum2d2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
Distinct variable groups:   𝑗,𝑘,𝐵   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsum2d2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d2.z . . 3 0 = (0g𝐺)
3 gsum2d2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
5 vsnex 5386 . . . . . 6 {𝑗} ∈ V
6 gsum2d2.r . . . . . 6 ((𝜑𝑗𝐴) → 𝐶𝑊)
7 xpexg 7684 . . . . . 6 (({𝑗} ∈ V ∧ 𝐶𝑊) → ({𝑗} × 𝐶) ∈ V)
85, 6, 7sylancr 587 . . . . 5 ((𝜑𝑗𝐴) → ({𝑗} × 𝐶) ∈ V)
98ralrimiva 3143 . . . 4 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
10 iunexg 7896 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
114, 9, 10syl2anc 584 . . 3 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
12 relxp 5651 . . . . . 6 Rel ({𝑗} × 𝐶)
1312rgenw 3068 . . . . 5 𝑗𝐴 Rel ({𝑗} × 𝐶)
14 reliun 5772 . . . . 5 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
1513, 14mpbir 230 . . . 4 Rel 𝑗𝐴 ({𝑗} × 𝐶)
1615a1i 11 . . 3 (𝜑 → Rel 𝑗𝐴 ({𝑗} × 𝐶))
17 vex 3449 . . . . . 6 𝑥 ∈ V
1817eldm2 5857 . . . . 5 (𝑥 ∈ dom 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
19 eliunxp 5793 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)))
20 vex 3449 . . . . . . . . . . . 12 𝑦 ∈ V
2117, 20opth1 5432 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ → 𝑥 = 𝑗)
2221ad2antrl 726 . . . . . . . . . 10 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑥 = 𝑗)
23 simprrl 779 . . . . . . . . . 10 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑗𝐴)
2422, 23eqeltrd 2838 . . . . . . . . 9 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑥𝐴)
2524ex 413 . . . . . . . 8 (𝜑 → ((⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)) → 𝑥𝐴))
2625exlimdvv 1937 . . . . . . 7 (𝜑 → (∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)) → 𝑥𝐴))
2719, 26biimtrid 241 . . . . . 6 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
2827exlimdv 1936 . . . . 5 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
2918, 28biimtrid 241 . . . 4 (𝜑 → (𝑥 ∈ dom 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
3029ssrdv 3950 . . 3 (𝜑 → dom 𝑗𝐴 ({𝑗} × 𝐶) ⊆ 𝐴)
31 gsum2d2.f . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
3231ralrimivva 3197 . . . 4 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
33 eqid 2736 . . . . 5 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
3433fmpox 7999 . . . 4 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
3532, 34sylib 217 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
36 gsum2d2.u . . . 4 (𝜑𝑈 ∈ Fin)
37 gsum2d2.n . . . 4 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
381, 2, 3, 4, 6, 31, 36, 37gsum2d2lem 19750 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
391, 2, 3, 11, 16, 4, 30, 35, 38gsum2d 19749 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))))
40 nfcv 2907 . . . . . 6 𝑗𝐺
41 nfcv 2907 . . . . . 6 𝑗 Σg
42 nfiu1 4988 . . . . . . . 8 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
43 nfcv 2907 . . . . . . . 8 𝑗{𝑚}
4442, 43nfima 6021 . . . . . . 7 𝑗( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚})
45 nfcv 2907 . . . . . . . 8 𝑗𝑚
46 nfmpo1 7437 . . . . . . . 8 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
47 nfcv 2907 . . . . . . . 8 𝑗𝑛
4845, 46, 47nfov 7387 . . . . . . 7 𝑗(𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)
4944, 48nfmpt 5212 . . . . . 6 𝑗(𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))
5040, 41, 49nfov 7387 . . . . 5 𝑗(𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
51 nfcv 2907 . . . . 5 𝑚(𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
52 sneq 4596 . . . . . . . 8 (𝑚 = 𝑗 → {𝑚} = {𝑗})
5352imaeq2d 6013 . . . . . . 7 (𝑚 = 𝑗 → ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) = ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}))
54 oveq1 7364 . . . . . . 7 (𝑚 = 𝑗 → (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))
5553, 54mpteq12dv 5196 . . . . . 6 (𝑚 = 𝑗 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
5655oveq2d 7373 . . . . 5 (𝑚 = 𝑗 → (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))) = (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))
5750, 51, 56cbvmpt 5216 . . . 4 (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))
58 vex 3449 . . . . . . . . . . . . . 14 𝑗 ∈ V
59 vex 3449 . . . . . . . . . . . . . 14 𝑘 ∈ V
6058, 59elimasn 6041 . . . . . . . . . . . . 13 (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
61 opeliunxp 5699 . . . . . . . . . . . . 13 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
6260, 61bitri 274 . . . . . . . . . . . 12 (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ (𝑗𝐴𝑘𝐶))
6362baib 536 . . . . . . . . . . 11 (𝑗𝐴 → (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ 𝑘𝐶))
6463eqrdv 2734 . . . . . . . . . 10 (𝑗𝐴 → ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) = 𝐶)
6564mpteq1d 5200 . . . . . . . . 9 (𝑗𝐴 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑛𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
66 nfcv 2907 . . . . . . . . . . 11 𝑘𝑗
67 nfmpo2 7438 . . . . . . . . . . 11 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
68 nfcv 2907 . . . . . . . . . . 11 𝑘𝑛
6966, 67, 68nfov 7387 . . . . . . . . . 10 𝑘(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)
70 nfcv 2907 . . . . . . . . . 10 𝑛(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
71 oveq2 7365 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
7269, 70, 71cbvmpt 5216 . . . . . . . . 9 (𝑛𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
7365, 72eqtrdi 2792 . . . . . . . 8 (𝑗𝐴 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
7473adantl 482 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
75 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑗𝐴)
76 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑘𝐶)
7733ovmpt4g 7502 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
7875, 76, 31, 77syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
7978anassrs 468 . . . . . . . 8 (((𝜑𝑗𝐴) ∧ 𝑘𝐶) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
8079mpteq2dva 5205 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)) = (𝑘𝐶𝑋))
8174, 80eqtrd 2776 . . . . . 6 ((𝜑𝑗𝐴) → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶𝑋))
8281oveq2d 7373 . . . . 5 ((𝜑𝑗𝐴) → (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))) = (𝐺 Σg (𝑘𝐶𝑋)))
8382mpteq2dva 5205 . . . 4 (𝜑 → (𝑗𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋))))
8457, 83eqtrid 2788 . . 3 (𝜑 → (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋))))
8584oveq2d 7373 . 2 (𝜑 → (𝐺 Σg (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
8639, 85eqtrd 2776 1 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3064  Vcvv 3445  {csn 4586  cop 4592   ciun 4954   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  cima 5636  Rel wrel 5638  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  Fincfn 8883  Basecbs 17083  0gc0g 17321   Σg cgsu 17322  CMndccmn 19562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564
This theorem is referenced by:  gsumcom3  19755  gsumdixp  20033  psrass1lemOLD  21342  psrass1lem  21345  gsummpt2co  31890
  Copyright terms: Public domain W3C validator