MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2 Structured version   Visualization version   GIF version

Theorem gsum2d2 19883
Description: Write a group sum over a two-dimensional region as a double sum. Note that 𝐶(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
Assertion
Ref Expression
gsum2d2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
Distinct variable groups:   𝑗,𝑘,𝐵   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsum2d2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d2.z . . 3 0 = (0g𝐺)
3 gsum2d2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
5 vsnex 5429 . . . . . 6 {𝑗} ∈ V
6 gsum2d2.r . . . . . 6 ((𝜑𝑗𝐴) → 𝐶𝑊)
7 xpexg 7739 . . . . . 6 (({𝑗} ∈ V ∧ 𝐶𝑊) → ({𝑗} × 𝐶) ∈ V)
85, 6, 7sylancr 587 . . . . 5 ((𝜑𝑗𝐴) → ({𝑗} × 𝐶) ∈ V)
98ralrimiva 3146 . . . 4 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
10 iunexg 7952 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
114, 9, 10syl2anc 584 . . 3 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
12 relxp 5694 . . . . . 6 Rel ({𝑗} × 𝐶)
1312rgenw 3065 . . . . 5 𝑗𝐴 Rel ({𝑗} × 𝐶)
14 reliun 5816 . . . . 5 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
1513, 14mpbir 230 . . . 4 Rel 𝑗𝐴 ({𝑗} × 𝐶)
1615a1i 11 . . 3 (𝜑 → Rel 𝑗𝐴 ({𝑗} × 𝐶))
17 vex 3478 . . . . . 6 𝑥 ∈ V
1817eldm2 5901 . . . . 5 (𝑥 ∈ dom 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
19 eliunxp 5837 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)))
20 vex 3478 . . . . . . . . . . . 12 𝑦 ∈ V
2117, 20opth1 5475 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ → 𝑥 = 𝑗)
2221ad2antrl 726 . . . . . . . . . 10 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑥 = 𝑗)
23 simprrl 779 . . . . . . . . . 10 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑗𝐴)
2422, 23eqeltrd 2833 . . . . . . . . 9 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑥𝐴)
2524ex 413 . . . . . . . 8 (𝜑 → ((⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)) → 𝑥𝐴))
2625exlimdvv 1937 . . . . . . 7 (𝜑 → (∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)) → 𝑥𝐴))
2719, 26biimtrid 241 . . . . . 6 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
2827exlimdv 1936 . . . . 5 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
2918, 28biimtrid 241 . . . 4 (𝜑 → (𝑥 ∈ dom 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
3029ssrdv 3988 . . 3 (𝜑 → dom 𝑗𝐴 ({𝑗} × 𝐶) ⊆ 𝐴)
31 gsum2d2.f . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
3231ralrimivva 3200 . . . 4 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
33 eqid 2732 . . . . 5 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
3433fmpox 8055 . . . 4 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
3532, 34sylib 217 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
36 gsum2d2.u . . . 4 (𝜑𝑈 ∈ Fin)
37 gsum2d2.n . . . 4 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
381, 2, 3, 4, 6, 31, 36, 37gsum2d2lem 19882 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
391, 2, 3, 11, 16, 4, 30, 35, 38gsum2d 19881 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))))
40 nfcv 2903 . . . . . 6 𝑗𝐺
41 nfcv 2903 . . . . . 6 𝑗 Σg
42 nfiu1 5031 . . . . . . . 8 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
43 nfcv 2903 . . . . . . . 8 𝑗{𝑚}
4442, 43nfima 6067 . . . . . . 7 𝑗( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚})
45 nfcv 2903 . . . . . . . 8 𝑗𝑚
46 nfmpo1 7491 . . . . . . . 8 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
47 nfcv 2903 . . . . . . . 8 𝑗𝑛
4845, 46, 47nfov 7441 . . . . . . 7 𝑗(𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)
4944, 48nfmpt 5255 . . . . . 6 𝑗(𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))
5040, 41, 49nfov 7441 . . . . 5 𝑗(𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
51 nfcv 2903 . . . . 5 𝑚(𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
52 sneq 4638 . . . . . . . 8 (𝑚 = 𝑗 → {𝑚} = {𝑗})
5352imaeq2d 6059 . . . . . . 7 (𝑚 = 𝑗 → ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) = ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}))
54 oveq1 7418 . . . . . . 7 (𝑚 = 𝑗 → (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))
5553, 54mpteq12dv 5239 . . . . . 6 (𝑚 = 𝑗 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
5655oveq2d 7427 . . . . 5 (𝑚 = 𝑗 → (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))) = (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))
5750, 51, 56cbvmpt 5259 . . . 4 (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))
58 vex 3478 . . . . . . . . . . . . . 14 𝑗 ∈ V
59 vex 3478 . . . . . . . . . . . . . 14 𝑘 ∈ V
6058, 59elimasn 6088 . . . . . . . . . . . . 13 (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
61 opeliunxp 5743 . . . . . . . . . . . . 13 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
6260, 61bitri 274 . . . . . . . . . . . 12 (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ (𝑗𝐴𝑘𝐶))
6362baib 536 . . . . . . . . . . 11 (𝑗𝐴 → (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ 𝑘𝐶))
6463eqrdv 2730 . . . . . . . . . 10 (𝑗𝐴 → ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) = 𝐶)
6564mpteq1d 5243 . . . . . . . . 9 (𝑗𝐴 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑛𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
66 nfcv 2903 . . . . . . . . . . 11 𝑘𝑗
67 nfmpo2 7492 . . . . . . . . . . 11 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
68 nfcv 2903 . . . . . . . . . . 11 𝑘𝑛
6966, 67, 68nfov 7441 . . . . . . . . . 10 𝑘(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)
70 nfcv 2903 . . . . . . . . . 10 𝑛(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
71 oveq2 7419 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
7269, 70, 71cbvmpt 5259 . . . . . . . . 9 (𝑛𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
7365, 72eqtrdi 2788 . . . . . . . 8 (𝑗𝐴 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
7473adantl 482 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
75 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑗𝐴)
76 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑘𝐶)
7733ovmpt4g 7557 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
7875, 76, 31, 77syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
7978anassrs 468 . . . . . . . 8 (((𝜑𝑗𝐴) ∧ 𝑘𝐶) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
8079mpteq2dva 5248 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)) = (𝑘𝐶𝑋))
8174, 80eqtrd 2772 . . . . . 6 ((𝜑𝑗𝐴) → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶𝑋))
8281oveq2d 7427 . . . . 5 ((𝜑𝑗𝐴) → (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))) = (𝐺 Σg (𝑘𝐶𝑋)))
8382mpteq2dva 5248 . . . 4 (𝜑 → (𝑗𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋))))
8457, 83eqtrid 2784 . . 3 (𝜑 → (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋))))
8584oveq2d 7427 . 2 (𝜑 → (𝐺 Σg (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
8639, 85eqtrd 2772 1 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3061  Vcvv 3474  {csn 4628  cop 4634   ciun 4997   class class class wbr 5148  cmpt 5231   × cxp 5674  dom cdm 5676  cima 5679  Rel wrel 5681  wf 6539  cfv 6543  (class class class)co 7411  cmpo 7413  Fincfn 8941  Basecbs 17148  0gc0g 17389   Σg cgsu 17390  CMndccmn 19689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-0g 17391  df-gsum 17392  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691
This theorem is referenced by:  gsumcom3  19887  gsumdixp  20207  psrass1lemOLD  21712  psrass1lem  21715  gsummpt2co  32458
  Copyright terms: Public domain W3C validator