MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2 Structured version   Visualization version   GIF version

Theorem gsum2d2 19992
Description: Write a group sum over a two-dimensional region as a double sum. Note that 𝐶(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
Assertion
Ref Expression
gsum2d2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
Distinct variable groups:   𝑗,𝑘,𝐵   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsum2d2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d2.z . . 3 0 = (0g𝐺)
3 gsum2d2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
5 vsnex 5434 . . . . . 6 {𝑗} ∈ V
6 gsum2d2.r . . . . . 6 ((𝜑𝑗𝐴) → 𝐶𝑊)
7 xpexg 7770 . . . . . 6 (({𝑗} ∈ V ∧ 𝐶𝑊) → ({𝑗} × 𝐶) ∈ V)
85, 6, 7sylancr 587 . . . . 5 ((𝜑𝑗𝐴) → ({𝑗} × 𝐶) ∈ V)
98ralrimiva 3146 . . . 4 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
10 iunexg 7988 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
114, 9, 10syl2anc 584 . . 3 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
12 relxp 5703 . . . . . 6 Rel ({𝑗} × 𝐶)
1312rgenw 3065 . . . . 5 𝑗𝐴 Rel ({𝑗} × 𝐶)
14 reliun 5826 . . . . 5 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
1513, 14mpbir 231 . . . 4 Rel 𝑗𝐴 ({𝑗} × 𝐶)
1615a1i 11 . . 3 (𝜑 → Rel 𝑗𝐴 ({𝑗} × 𝐶))
17 vex 3484 . . . . . 6 𝑥 ∈ V
1817eldm2 5912 . . . . 5 (𝑥 ∈ dom 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
19 eliunxp 5848 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)))
20 vex 3484 . . . . . . . . . . . 12 𝑦 ∈ V
2117, 20opth1 5480 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ → 𝑥 = 𝑗)
2221ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑥 = 𝑗)
23 simprrl 781 . . . . . . . . . 10 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑗𝐴)
2422, 23eqeltrd 2841 . . . . . . . . 9 ((𝜑 ∧ (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶))) → 𝑥𝐴)
2524ex 412 . . . . . . . 8 (𝜑 → ((⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)) → 𝑥𝐴))
2625exlimdvv 1934 . . . . . . 7 (𝜑 → (∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐶)) → 𝑥𝐴))
2719, 26biimtrid 242 . . . . . 6 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
2827exlimdv 1933 . . . . 5 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
2918, 28biimtrid 242 . . . 4 (𝜑 → (𝑥 ∈ dom 𝑗𝐴 ({𝑗} × 𝐶) → 𝑥𝐴))
3029ssrdv 3989 . . 3 (𝜑 → dom 𝑗𝐴 ({𝑗} × 𝐶) ⊆ 𝐴)
31 gsum2d2.f . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
3231ralrimivva 3202 . . . 4 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
33 eqid 2737 . . . . 5 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
3433fmpox 8092 . . . 4 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
3532, 34sylib 218 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
36 gsum2d2.u . . . 4 (𝜑𝑈 ∈ Fin)
37 gsum2d2.n . . . 4 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
381, 2, 3, 4, 6, 31, 36, 37gsum2d2lem 19991 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
391, 2, 3, 11, 16, 4, 30, 35, 38gsum2d 19990 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))))
40 nfcv 2905 . . . . . 6 𝑗𝐺
41 nfcv 2905 . . . . . 6 𝑗 Σg
42 nfiu1 5027 . . . . . . . 8 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
43 nfcv 2905 . . . . . . . 8 𝑗{𝑚}
4442, 43nfima 6086 . . . . . . 7 𝑗( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚})
45 nfcv 2905 . . . . . . . 8 𝑗𝑚
46 nfmpo1 7513 . . . . . . . 8 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
47 nfcv 2905 . . . . . . . 8 𝑗𝑛
4845, 46, 47nfov 7461 . . . . . . 7 𝑗(𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)
4944, 48nfmpt 5249 . . . . . 6 𝑗(𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))
5040, 41, 49nfov 7461 . . . . 5 𝑗(𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
51 nfcv 2905 . . . . 5 𝑚(𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
52 sneq 4636 . . . . . . . 8 (𝑚 = 𝑗 → {𝑚} = {𝑗})
5352imaeq2d 6078 . . . . . . 7 (𝑚 = 𝑗 → ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) = ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}))
54 oveq1 7438 . . . . . . 7 (𝑚 = 𝑗 → (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))
5553, 54mpteq12dv 5233 . . . . . 6 (𝑚 = 𝑗 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
5655oveq2d 7447 . . . . 5 (𝑚 = 𝑗 → (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))) = (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))
5750, 51, 56cbvmpt 5253 . . . 4 (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))
58 vex 3484 . . . . . . . . . . . . . 14 𝑗 ∈ V
59 vex 3484 . . . . . . . . . . . . . 14 𝑘 ∈ V
6058, 59elimasn 6108 . . . . . . . . . . . . 13 (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
61 opeliunxp 5752 . . . . . . . . . . . . 13 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
6260, 61bitri 275 . . . . . . . . . . . 12 (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ (𝑗𝐴𝑘𝐶))
6362baib 535 . . . . . . . . . . 11 (𝑗𝐴 → (𝑘 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↔ 𝑘𝐶))
6463eqrdv 2735 . . . . . . . . . 10 (𝑗𝐴 → ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) = 𝐶)
6564mpteq1d 5237 . . . . . . . . 9 (𝑗𝐴 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑛𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))
66 nfcv 2905 . . . . . . . . . . 11 𝑘𝑗
67 nfmpo2 7514 . . . . . . . . . . 11 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
68 nfcv 2905 . . . . . . . . . . 11 𝑘𝑛
6966, 67, 68nfov 7461 . . . . . . . . . 10 𝑘(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)
70 nfcv 2905 . . . . . . . . . 10 𝑛(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
71 oveq2 7439 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
7269, 70, 71cbvmpt 5253 . . . . . . . . 9 (𝑛𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
7365, 72eqtrdi 2793 . . . . . . . 8 (𝑗𝐴 → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
7473adantl 481 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
75 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑗𝐴)
76 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑘𝐶)
7733ovmpt4g 7580 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
7875, 76, 31, 77syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
7978anassrs 467 . . . . . . . 8 (((𝜑𝑗𝐴) ∧ 𝑘𝐶) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
8079mpteq2dva 5242 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑘𝐶 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)) = (𝑘𝐶𝑋))
8174, 80eqtrd 2777 . . . . . 6 ((𝜑𝑗𝐴) → (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)) = (𝑘𝐶𝑋))
8281oveq2d 7447 . . . . 5 ((𝜑𝑗𝐴) → (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛))) = (𝐺 Σg (𝑘𝐶𝑋)))
8382mpteq2dva 5242 . . . 4 (𝜑 → (𝑗𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑗}) ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋))))
8457, 83eqtrid 2789 . . 3 (𝜑 → (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋))))
8584oveq2d 7447 . 2 (𝜑 → (𝐺 Σg (𝑚𝐴 ↦ (𝐺 Σg (𝑛 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) “ {𝑚}) ↦ (𝑚(𝑗𝐴, 𝑘𝐶𝑋)𝑛))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
8639, 85eqtrd 2777 1 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  Vcvv 3480  {csn 4626  cop 4632   ciun 4991   class class class wbr 5143  cmpt 5225   × cxp 5683  dom cdm 5685  cima 5688  Rel wrel 5690  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  Fincfn 8985  Basecbs 17247  0gc0g 17484   Σg cgsu 17485  CMndccmn 19798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800
This theorem is referenced by:  gsumcom3  19996  gsumdixp  20316  psrass1lem  21952  gsummpt2co  33051
  Copyright terms: Public domain W3C validator