MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2k Structured version   Visualization version   GIF version

Theorem cnmpt2k 23582
Description: The currying of a two-argument function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
cnmpt2k.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt2k.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt2k.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Assertion
Ref Expression
cnmpt2k (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
Distinct variable groups:   𝑥,𝑦,𝐿   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt2k
Dummy variables 𝑤 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2892 . . . . 5 𝑥𝑌
2 nfcv 2892 . . . . . 6 𝑥𝑣
3 nfmpo2 7473 . . . . . 6 𝑥(𝑦𝑌, 𝑥𝑋𝐴)
4 nfcv 2892 . . . . . 6 𝑥𝑤
52, 3, 4nfov 7420 . . . . 5 𝑥(𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
61, 5nfmpt 5208 . . . 4 𝑥(𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
7 nfcv 2892 . . . 4 𝑤(𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
8 nfcv 2892 . . . . . . 7 𝑦𝑣
9 nfmpo1 7472 . . . . . . 7 𝑦(𝑦𝑌, 𝑥𝑋𝐴)
10 nfcv 2892 . . . . . . 7 𝑦𝑤
118, 9, 10nfov 7420 . . . . . 6 𝑦(𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
12 nfcv 2892 . . . . . 6 𝑣(𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
13 oveq1 7397 . . . . . 6 (𝑣 = 𝑦 → (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
1411, 12, 13cbvmpt 5212 . . . . 5 (𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤)) = (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
15 oveq2 7398 . . . . . 6 (𝑤 = 𝑥 → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑤) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
1615mpteq2dv 5204 . . . . 5 (𝑤 = 𝑥 → (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑤)) = (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
1714, 16eqtrid 2777 . . . 4 (𝑤 = 𝑥 → (𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤)) = (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
186, 7, 17cbvmpt 5212 . . 3 (𝑤𝑋 ↦ (𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤))) = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
19 simpr 484 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
20 simplr 768 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑥𝑋)
21 cnmpt2k.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ (TopOn‘𝑌))
22 cnmpt2k.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
23 txtopon 23485 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐾 ×t 𝐽) ∈ (TopOn‘(𝑌 × 𝑋)))
2421, 22, 23syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐾 ×t 𝐽) ∈ (TopOn‘(𝑌 × 𝑋)))
25 cnmpt2k.a . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
26 cntop2 23135 . . . . . . . . . . . . 13 ((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top)
2725, 26syl 17 . . . . . . . . . . . 12 (𝜑𝐿 ∈ Top)
28 toptopon2 22812 . . . . . . . . . . . 12 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
2927, 28sylib 218 . . . . . . . . . . 11 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
3022, 21, 25cnmptcom 23572 . . . . . . . . . . 11 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
31 cnf2 23143 . . . . . . . . . . 11 (((𝐾 ×t 𝐽) ∈ (TopOn‘(𝑌 × 𝑋)) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿)) → (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
3224, 29, 30, 31syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
33 eqid 2730 . . . . . . . . . . 11 (𝑦𝑌, 𝑥𝑋𝐴) = (𝑦𝑌, 𝑥𝑋𝐴)
3433fmpo 8050 . . . . . . . . . 10 (∀𝑦𝑌𝑥𝑋 𝐴 𝐿 ↔ (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
3532, 34sylibr 234 . . . . . . . . 9 (𝜑 → ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
3635r19.21bi 3230 . . . . . . . 8 ((𝜑𝑦𝑌) → ∀𝑥𝑋 𝐴 𝐿)
3736r19.21bi 3230 . . . . . . 7 (((𝜑𝑦𝑌) ∧ 𝑥𝑋) → 𝐴 𝐿)
3837an32s 652 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 𝐿)
3933ovmpt4g 7539 . . . . . 6 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = 𝐴)
4019, 20, 38, 39syl3anc 1373 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = 𝐴)
4140mpteq2dva 5203 . . . 4 ((𝜑𝑥𝑋) → (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)) = (𝑦𝑌𝐴))
4241mpteq2dva 5203 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥))) = (𝑥𝑋 ↦ (𝑦𝑌𝐴)))
4318, 42eqtrid 2777 . 2 (𝜑 → (𝑤𝑋 ↦ (𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤))) = (𝑥𝑋 ↦ (𝑦𝑌𝐴)))
44 eqid 2730 . . . . 5 (𝑤𝑋 ↦ (𝑣𝑌 ↦ ⟨𝑣, 𝑤⟩)) = (𝑤𝑋 ↦ (𝑣𝑌 ↦ ⟨𝑣, 𝑤⟩))
4544xkoinjcn 23581 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑤𝑋 ↦ (𝑣𝑌 ↦ ⟨𝑣, 𝑤⟩)) ∈ (𝐽 Cn ((𝐾 ×t 𝐽) ↑ko 𝐾)))
4622, 21, 45syl2anc 584 . . 3 (𝜑 → (𝑤𝑋 ↦ (𝑣𝑌 ↦ ⟨𝑣, 𝑤⟩)) ∈ (𝐽 Cn ((𝐾 ×t 𝐽) ↑ko 𝐾)))
4732feqmptd 6932 . . . 4 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ((𝑦𝑌, 𝑥𝑋𝐴)‘𝑧)))
4847, 30eqeltrrd 2830 . . 3 (𝜑 → (𝑧 ∈ (𝑌 × 𝑋) ↦ ((𝑦𝑌, 𝑥𝑋𝐴)‘𝑧)) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
49 fveq2 6861 . . . 4 (𝑧 = ⟨𝑣, 𝑤⟩ → ((𝑦𝑌, 𝑥𝑋𝐴)‘𝑧) = ((𝑦𝑌, 𝑥𝑋𝐴)‘⟨𝑣, 𝑤⟩))
50 df-ov 7393 . . . 4 (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤) = ((𝑦𝑌, 𝑥𝑋𝐴)‘⟨𝑣, 𝑤⟩)
5149, 50eqtr4di 2783 . . 3 (𝑧 = ⟨𝑣, 𝑤⟩ → ((𝑦𝑌, 𝑥𝑋𝐴)‘𝑧) = (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
5222, 21, 24, 46, 48, 51cnmptk1 23575 . 2 (𝜑 → (𝑤𝑋 ↦ (𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤))) ∈ (𝐽 Cn (𝐿ko 𝐾)))
5343, 52eqeltrrd 2830 1 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cop 4598   cuni 4874  cmpt 5191   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  Topctop 22787  TopOnctopon 22804   Cn ccn 23118   ×t ctx 23454  ko cxko 23455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-map 8804  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-xko 23457
This theorem is referenced by:  xkocnv  23708  xkohmeo  23709
  Copyright terms: Public domain W3C validator