Step | Hyp | Ref
| Expression |
1 | | xkofvcn.2 |
. 2
⊢ 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥 ∈ 𝑋 ↦ (𝑓‘𝑥)) |
2 | | nllytop 22605 |
. . . 4
⊢ (𝑅 ∈ 𝑛-Locally Comp
→ 𝑅 ∈
Top) |
3 | | eqid 2739 |
. . . . 5
⊢ (𝑆 ↑ko 𝑅) = (𝑆 ↑ko 𝑅) |
4 | 3 | xkotopon 22732 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) |
5 | 2, 4 | sylan 579 |
. . 3
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑆 ↑ko
𝑅) ∈
(TopOn‘(𝑅 Cn 𝑆))) |
6 | 2 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
𝑅 ∈
Top) |
7 | | xkofvcn.1 |
. . . . 5
⊢ 𝑋 = ∪
𝑅 |
8 | 7 | toptopon 22047 |
. . . 4
⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
9 | 6, 8 | sylib 217 |
. . 3
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
𝑅 ∈ (TopOn‘𝑋)) |
10 | 5, 9 | cnmpt1st 22800 |
. . . 4
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑓 ∈ (𝑅 Cn 𝑆), 𝑥 ∈ 𝑋 ↦ 𝑓) ∈ (((𝑆 ↑ko 𝑅) ×t 𝑅) Cn (𝑆 ↑ko 𝑅))) |
11 | 5, 9 | cnmpt2nd 22801 |
. . . . 5
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑓 ∈ (𝑅 Cn 𝑆), 𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (((𝑆 ↑ko 𝑅) ×t 𝑅) Cn 𝑅)) |
12 | | 1on 8288 |
. . . . . . 7
⊢
1o ∈ On |
13 | | distopon 22128 |
. . . . . . 7
⊢
(1o ∈ On → 𝒫 1o ∈
(TopOn‘1o)) |
14 | 12, 13 | mp1i 13 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
𝒫 1o ∈ (TopOn‘1o)) |
15 | | xkoccn 22751 |
. . . . . 6
⊢
((𝒫 1o ∈ (TopOn‘1o) ∧ 𝑅 ∈ (TopOn‘𝑋)) → (𝑦 ∈ 𝑋 ↦ (1o × {𝑦})) ∈ (𝑅 Cn (𝑅 ↑ko 𝒫
1o))) |
16 | 14, 9, 15 | syl2anc 583 |
. . . . 5
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑦 ∈ 𝑋 ↦ (1o × {𝑦})) ∈ (𝑅 Cn (𝑅 ↑ko 𝒫
1o))) |
17 | | sneq 4576 |
. . . . . 6
⊢ (𝑦 = 𝑥 → {𝑦} = {𝑥}) |
18 | 17 | xpeq2d 5618 |
. . . . 5
⊢ (𝑦 = 𝑥 → (1o × {𝑦}) = (1o ×
{𝑥})) |
19 | 5, 9, 11, 9, 16, 18 | cnmpt21 22803 |
. . . 4
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑓 ∈ (𝑅 Cn 𝑆), 𝑥 ∈ 𝑋 ↦ (1o × {𝑥})) ∈ (((𝑆 ↑ko 𝑅) ×t 𝑅) Cn (𝑅 ↑ko 𝒫
1o))) |
20 | | distop 22126 |
. . . . . 6
⊢
(1o ∈ On → 𝒫 1o ∈
Top) |
21 | 12, 20 | mp1i 13 |
. . . . 5
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
𝒫 1o ∈ Top) |
22 | | eqid 2739 |
. . . . . 6
⊢ (𝑅 ↑ko 𝒫
1o) = (𝑅
↑ko 𝒫 1o) |
23 | 22 | xkotopon 22732 |
. . . . 5
⊢
((𝒫 1o ∈ Top ∧ 𝑅 ∈ Top) → (𝑅 ↑ko 𝒫
1o) ∈ (TopOn‘(𝒫 1o Cn 𝑅))) |
24 | 21, 6, 23 | syl2anc 583 |
. . . 4
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑅 ↑ko
𝒫 1o) ∈ (TopOn‘(𝒫 1o Cn 𝑅))) |
25 | | simpl 482 |
. . . . 5
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
𝑅 ∈ 𝑛-Locally
Comp) |
26 | | simpr 484 |
. . . . 5
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
𝑆 ∈
Top) |
27 | | eqid 2739 |
. . . . . 6
⊢ (𝑔 ∈ (𝑅 Cn 𝑆), ℎ ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔 ∘ ℎ)) = (𝑔 ∈ (𝑅 Cn 𝑆), ℎ ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔 ∘ ℎ)) |
28 | 27 | xkococn 22792 |
. . . . 5
⊢
((𝒫 1o ∈ Top ∧ 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑔 ∈ (𝑅 Cn 𝑆), ℎ ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔 ∘ ℎ)) ∈ (((𝑆 ↑ko 𝑅) ×t (𝑅 ↑ko 𝒫
1o)) Cn (𝑆
↑ko 𝒫 1o))) |
29 | 21, 25, 26, 28 | syl3anc 1369 |
. . . 4
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑔 ∈ (𝑅 Cn 𝑆), ℎ ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔 ∘ ℎ)) ∈ (((𝑆 ↑ko 𝑅) ×t (𝑅 ↑ko 𝒫
1o)) Cn (𝑆
↑ko 𝒫 1o))) |
30 | | coeq1 5763 |
. . . . 5
⊢ (𝑔 = 𝑓 → (𝑔 ∘ ℎ) = (𝑓 ∘ ℎ)) |
31 | | coeq2 5764 |
. . . . 5
⊢ (ℎ = (1o × {𝑥}) → (𝑓 ∘ ℎ) = (𝑓 ∘ (1o × {𝑥}))) |
32 | 30, 31 | sylan9eq 2799 |
. . . 4
⊢ ((𝑔 = 𝑓 ∧ ℎ = (1o × {𝑥})) → (𝑔 ∘ ℎ) = (𝑓 ∘ (1o × {𝑥}))) |
33 | 5, 9, 10, 19, 5, 24, 29, 32 | cnmpt22 22806 |
. . 3
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑓 ∈ (𝑅 Cn 𝑆), 𝑥 ∈ 𝑋 ↦ (𝑓 ∘ (1o × {𝑥}))) ∈ (((𝑆 ↑ko 𝑅) ×t 𝑅) Cn (𝑆 ↑ko 𝒫
1o))) |
34 | | eqid 2739 |
. . . . 5
⊢ (𝑆 ↑ko 𝒫
1o) = (𝑆
↑ko 𝒫 1o) |
35 | 34 | xkotopon 22732 |
. . . 4
⊢
((𝒫 1o ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝒫
1o) ∈ (TopOn‘(𝒫 1o Cn 𝑆))) |
36 | 21, 26, 35 | syl2anc 583 |
. . 3
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑆 ↑ko
𝒫 1o) ∈ (TopOn‘(𝒫 1o Cn 𝑆))) |
37 | | 0lt1o 8310 |
. . . . 5
⊢ ∅
∈ 1o |
38 | 37 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
∅ ∈ 1o) |
39 | | unipw 5368 |
. . . . . 6
⊢ ∪ 𝒫 1o = 1o |
40 | 39 | eqcomi 2748 |
. . . . 5
⊢
1o = ∪ 𝒫
1o |
41 | 40 | xkopjcn 22788 |
. . . 4
⊢
((𝒫 1o ∈ Top ∧ 𝑆 ∈ Top ∧ ∅ ∈
1o) → (𝑔
∈ (𝒫 1o Cn 𝑆) ↦ (𝑔‘∅)) ∈ ((𝑆 ↑ko 𝒫
1o) Cn 𝑆)) |
42 | 21, 26, 38, 41 | syl3anc 1369 |
. . 3
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑔 ∈ (𝒫
1o Cn 𝑆) ↦
(𝑔‘∅)) ∈
((𝑆 ↑ko
𝒫 1o) Cn 𝑆)) |
43 | | fveq1 6767 |
. . . 4
⊢ (𝑔 = (𝑓 ∘ (1o × {𝑥})) → (𝑔‘∅) = ((𝑓 ∘ (1o × {𝑥}))‘∅)) |
44 | | vex 3434 |
. . . . . . 7
⊢ 𝑥 ∈ V |
45 | 44 | fconst 6656 |
. . . . . 6
⊢
(1o × {𝑥}):1o⟶{𝑥} |
46 | | fvco3 6861 |
. . . . . 6
⊢
(((1o × {𝑥}):1o⟶{𝑥} ∧ ∅ ∈ 1o) →
((𝑓 ∘ (1o
× {𝑥}))‘∅) = (𝑓‘((1o × {𝑥})‘∅))) |
47 | 45, 37, 46 | mp2an 688 |
. . . . 5
⊢ ((𝑓 ∘ (1o ×
{𝑥}))‘∅) =
(𝑓‘((1o
× {𝑥})‘∅)) |
48 | 44 | fvconst2 7073 |
. . . . . . 7
⊢ (∅
∈ 1o → ((1o × {𝑥})‘∅) = 𝑥) |
49 | 37, 48 | ax-mp 5 |
. . . . . 6
⊢
((1o × {𝑥})‘∅) = 𝑥 |
50 | 49 | fveq2i 6771 |
. . . . 5
⊢ (𝑓‘((1o ×
{𝑥})‘∅)) =
(𝑓‘𝑥) |
51 | 47, 50 | eqtri 2767 |
. . . 4
⊢ ((𝑓 ∘ (1o ×
{𝑥}))‘∅) =
(𝑓‘𝑥) |
52 | 43, 51 | eqtrdi 2795 |
. . 3
⊢ (𝑔 = (𝑓 ∘ (1o × {𝑥})) → (𝑔‘∅) = (𝑓‘𝑥)) |
53 | 5, 9, 33, 36, 42, 52 | cnmpt21 22803 |
. 2
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
(𝑓 ∈ (𝑅 Cn 𝑆), 𝑥 ∈ 𝑋 ↦ (𝑓‘𝑥)) ∈ (((𝑆 ↑ko 𝑅) ×t 𝑅) Cn 𝑆)) |
54 | 1, 53 | eqeltrid 2844 |
1
⊢ ((𝑅 ∈ 𝑛-Locally Comp
∧ 𝑆 ∈ Top) →
𝐹 ∈ (((𝑆 ↑ko 𝑅) ×t 𝑅) Cn 𝑆)) |