MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkofvcn Structured version   Visualization version   GIF version

Theorem xkofvcn 23188
Description: Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn 23160.) (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
xkofvcn.1 𝑋 = βˆͺ 𝑅
xkofvcn.2 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), π‘₯ ∈ 𝑋 ↦ (π‘“β€˜π‘₯))
Assertion
Ref Expression
xkofvcn ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ 𝐹 ∈ (((𝑆 ↑ko 𝑅) Γ—t 𝑅) Cn 𝑆))
Distinct variable groups:   π‘₯,𝑓,𝑅   𝑆,𝑓,π‘₯   𝑓,𝑋,π‘₯
Allowed substitution hints:   𝐹(π‘₯,𝑓)

Proof of Theorem xkofvcn
Dummy variables 𝑔 β„Ž 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkofvcn.2 . 2 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), π‘₯ ∈ 𝑋 ↦ (π‘“β€˜π‘₯))
2 nllytop 22977 . . . 4 (𝑅 ∈ 𝑛-Locally Comp β†’ 𝑅 ∈ Top)
3 eqid 2733 . . . . 5 (𝑆 ↑ko 𝑅) = (𝑆 ↑ko 𝑅)
43xkotopon 23104 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) β†’ (𝑆 ↑ko 𝑅) ∈ (TopOnβ€˜(𝑅 Cn 𝑆)))
52, 4sylan 581 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑆 ↑ko 𝑅) ∈ (TopOnβ€˜(𝑅 Cn 𝑆)))
62adantr 482 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ 𝑅 ∈ Top)
7 xkofvcn.1 . . . . 5 𝑋 = βˆͺ 𝑅
87toptopon 22419 . . . 4 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOnβ€˜π‘‹))
96, 8sylib 217 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ 𝑅 ∈ (TopOnβ€˜π‘‹))
105, 9cnmpt1st 23172 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑓 ∈ (𝑅 Cn 𝑆), π‘₯ ∈ 𝑋 ↦ 𝑓) ∈ (((𝑆 ↑ko 𝑅) Γ—t 𝑅) Cn (𝑆 ↑ko 𝑅)))
115, 9cnmpt2nd 23173 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑓 ∈ (𝑅 Cn 𝑆), π‘₯ ∈ 𝑋 ↦ π‘₯) ∈ (((𝑆 ↑ko 𝑅) Γ—t 𝑅) Cn 𝑅))
12 1on 8478 . . . . . . 7 1o ∈ On
13 distopon 22500 . . . . . . 7 (1o ∈ On β†’ 𝒫 1o ∈ (TopOnβ€˜1o))
1412, 13mp1i 13 . . . . . 6 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ 𝒫 1o ∈ (TopOnβ€˜1o))
15 xkoccn 23123 . . . . . 6 ((𝒫 1o ∈ (TopOnβ€˜1o) ∧ 𝑅 ∈ (TopOnβ€˜π‘‹)) β†’ (𝑦 ∈ 𝑋 ↦ (1o Γ— {𝑦})) ∈ (𝑅 Cn (𝑅 ↑ko 𝒫 1o)))
1614, 9, 15syl2anc 585 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑦 ∈ 𝑋 ↦ (1o Γ— {𝑦})) ∈ (𝑅 Cn (𝑅 ↑ko 𝒫 1o)))
17 sneq 4639 . . . . . 6 (𝑦 = π‘₯ β†’ {𝑦} = {π‘₯})
1817xpeq2d 5707 . . . . 5 (𝑦 = π‘₯ β†’ (1o Γ— {𝑦}) = (1o Γ— {π‘₯}))
195, 9, 11, 9, 16, 18cnmpt21 23175 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑓 ∈ (𝑅 Cn 𝑆), π‘₯ ∈ 𝑋 ↦ (1o Γ— {π‘₯})) ∈ (((𝑆 ↑ko 𝑅) Γ—t 𝑅) Cn (𝑅 ↑ko 𝒫 1o)))
20 distop 22498 . . . . . 6 (1o ∈ On β†’ 𝒫 1o ∈ Top)
2112, 20mp1i 13 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ 𝒫 1o ∈ Top)
22 eqid 2733 . . . . . 6 (𝑅 ↑ko 𝒫 1o) = (𝑅 ↑ko 𝒫 1o)
2322xkotopon 23104 . . . . 5 ((𝒫 1o ∈ Top ∧ 𝑅 ∈ Top) β†’ (𝑅 ↑ko 𝒫 1o) ∈ (TopOnβ€˜(𝒫 1o Cn 𝑅)))
2421, 6, 23syl2anc 585 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑅 ↑ko 𝒫 1o) ∈ (TopOnβ€˜(𝒫 1o Cn 𝑅)))
25 simpl 484 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ 𝑅 ∈ 𝑛-Locally Comp)
26 simpr 486 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ 𝑆 ∈ Top)
27 eqid 2733 . . . . . 6 (𝑔 ∈ (𝑅 Cn 𝑆), β„Ž ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔 ∘ β„Ž)) = (𝑔 ∈ (𝑅 Cn 𝑆), β„Ž ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔 ∘ β„Ž))
2827xkococn 23164 . . . . 5 ((𝒫 1o ∈ Top ∧ 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑔 ∈ (𝑅 Cn 𝑆), β„Ž ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔 ∘ β„Ž)) ∈ (((𝑆 ↑ko 𝑅) Γ—t (𝑅 ↑ko 𝒫 1o)) Cn (𝑆 ↑ko 𝒫 1o)))
2921, 25, 26, 28syl3anc 1372 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑔 ∈ (𝑅 Cn 𝑆), β„Ž ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔 ∘ β„Ž)) ∈ (((𝑆 ↑ko 𝑅) Γ—t (𝑅 ↑ko 𝒫 1o)) Cn (𝑆 ↑ko 𝒫 1o)))
30 coeq1 5858 . . . . 5 (𝑔 = 𝑓 β†’ (𝑔 ∘ β„Ž) = (𝑓 ∘ β„Ž))
31 coeq2 5859 . . . . 5 (β„Ž = (1o Γ— {π‘₯}) β†’ (𝑓 ∘ β„Ž) = (𝑓 ∘ (1o Γ— {π‘₯})))
3230, 31sylan9eq 2793 . . . 4 ((𝑔 = 𝑓 ∧ β„Ž = (1o Γ— {π‘₯})) β†’ (𝑔 ∘ β„Ž) = (𝑓 ∘ (1o Γ— {π‘₯})))
335, 9, 10, 19, 5, 24, 29, 32cnmpt22 23178 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑓 ∈ (𝑅 Cn 𝑆), π‘₯ ∈ 𝑋 ↦ (𝑓 ∘ (1o Γ— {π‘₯}))) ∈ (((𝑆 ↑ko 𝑅) Γ—t 𝑅) Cn (𝑆 ↑ko 𝒫 1o)))
34 eqid 2733 . . . . 5 (𝑆 ↑ko 𝒫 1o) = (𝑆 ↑ko 𝒫 1o)
3534xkotopon 23104 . . . 4 ((𝒫 1o ∈ Top ∧ 𝑆 ∈ Top) β†’ (𝑆 ↑ko 𝒫 1o) ∈ (TopOnβ€˜(𝒫 1o Cn 𝑆)))
3621, 26, 35syl2anc 585 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑆 ↑ko 𝒫 1o) ∈ (TopOnβ€˜(𝒫 1o Cn 𝑆)))
37 0lt1o 8504 . . . . 5 βˆ… ∈ 1o
3837a1i 11 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ βˆ… ∈ 1o)
39 unipw 5451 . . . . . 6 βˆͺ 𝒫 1o = 1o
4039eqcomi 2742 . . . . 5 1o = βˆͺ 𝒫 1o
4140xkopjcn 23160 . . . 4 ((𝒫 1o ∈ Top ∧ 𝑆 ∈ Top ∧ βˆ… ∈ 1o) β†’ (𝑔 ∈ (𝒫 1o Cn 𝑆) ↦ (π‘”β€˜βˆ…)) ∈ ((𝑆 ↑ko 𝒫 1o) Cn 𝑆))
4221, 26, 38, 41syl3anc 1372 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑔 ∈ (𝒫 1o Cn 𝑆) ↦ (π‘”β€˜βˆ…)) ∈ ((𝑆 ↑ko 𝒫 1o) Cn 𝑆))
43 fveq1 6891 . . . 4 (𝑔 = (𝑓 ∘ (1o Γ— {π‘₯})) β†’ (π‘”β€˜βˆ…) = ((𝑓 ∘ (1o Γ— {π‘₯}))β€˜βˆ…))
44 vex 3479 . . . . . . 7 π‘₯ ∈ V
4544fconst 6778 . . . . . 6 (1o Γ— {π‘₯}):1o⟢{π‘₯}
46 fvco3 6991 . . . . . 6 (((1o Γ— {π‘₯}):1o⟢{π‘₯} ∧ βˆ… ∈ 1o) β†’ ((𝑓 ∘ (1o Γ— {π‘₯}))β€˜βˆ…) = (π‘“β€˜((1o Γ— {π‘₯})β€˜βˆ…)))
4745, 37, 46mp2an 691 . . . . 5 ((𝑓 ∘ (1o Γ— {π‘₯}))β€˜βˆ…) = (π‘“β€˜((1o Γ— {π‘₯})β€˜βˆ…))
4844fvconst2 7205 . . . . . . 7 (βˆ… ∈ 1o β†’ ((1o Γ— {π‘₯})β€˜βˆ…) = π‘₯)
4937, 48ax-mp 5 . . . . . 6 ((1o Γ— {π‘₯})β€˜βˆ…) = π‘₯
5049fveq2i 6895 . . . . 5 (π‘“β€˜((1o Γ— {π‘₯})β€˜βˆ…)) = (π‘“β€˜π‘₯)
5147, 50eqtri 2761 . . . 4 ((𝑓 ∘ (1o Γ— {π‘₯}))β€˜βˆ…) = (π‘“β€˜π‘₯)
5243, 51eqtrdi 2789 . . 3 (𝑔 = (𝑓 ∘ (1o Γ— {π‘₯})) β†’ (π‘”β€˜βˆ…) = (π‘“β€˜π‘₯))
535, 9, 33, 36, 42, 52cnmpt21 23175 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ (𝑓 ∈ (𝑅 Cn 𝑆), π‘₯ ∈ 𝑋 ↦ (π‘“β€˜π‘₯)) ∈ (((𝑆 ↑ko 𝑅) Γ—t 𝑅) Cn 𝑆))
541, 53eqeltrid 2838 1 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) β†’ 𝐹 ∈ (((𝑆 ↑ko 𝑅) Γ—t 𝑅) Cn 𝑆))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ…c0 4323  π’« cpw 4603  {csn 4629  βˆͺ cuni 4909   ↦ cmpt 5232   Γ— cxp 5675   ∘ ccom 5681  Oncon0 6365  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  1oc1o 8459  Topctop 22395  TopOnctopon 22412   Cn ccn 22728  Compccmp 22890  π‘›-Locally cnlly 22969   Γ—t ctx 23064   ↑ko cxko 23065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-1o 8466  df-er 8703  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-fin 8943  df-fi 9406  df-rest 17368  df-topgen 17389  df-pt 17390  df-top 22396  df-topon 22413  df-bases 22449  df-ntr 22524  df-nei 22602  df-cn 22731  df-cnp 22732  df-cmp 22891  df-nlly 22971  df-tx 23066  df-xko 23067
This theorem is referenced by:  cnmptk1p  23189  cnmptk2  23190
  Copyright terms: Public domain W3C validator