MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkofvcn Structured version   Visualization version   GIF version

Theorem xkofvcn 22835
Description: Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn 22807.) (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
xkofvcn.1 𝑋 = 𝑅
xkofvcn.2 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓𝑥))
Assertion
Ref Expression
xkofvcn ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝐹 ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn 𝑆))
Distinct variable groups:   𝑥,𝑓,𝑅   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑓)

Proof of Theorem xkofvcn
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkofvcn.2 . 2 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓𝑥))
2 nllytop 22624 . . . 4 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top)
3 eqid 2738 . . . . 5 (𝑆ko 𝑅) = (𝑆ko 𝑅)
43xkotopon 22751 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
52, 4sylan 580 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
62adantr 481 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑅 ∈ Top)
7 xkofvcn.1 . . . . 5 𝑋 = 𝑅
87toptopon 22066 . . . 4 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
96, 8sylib 217 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑅 ∈ (TopOn‘𝑋))
105, 9cnmpt1st 22819 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋𝑓) ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn (𝑆ko 𝑅)))
115, 9cnmpt2nd 22820 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋𝑥) ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn 𝑅))
12 1on 8309 . . . . . . 7 1o ∈ On
13 distopon 22147 . . . . . . 7 (1o ∈ On → 𝒫 1o ∈ (TopOn‘1o))
1412, 13mp1i 13 . . . . . 6 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝒫 1o ∈ (TopOn‘1o))
15 xkoccn 22770 . . . . . 6 ((𝒫 1o ∈ (TopOn‘1o) ∧ 𝑅 ∈ (TopOn‘𝑋)) → (𝑦𝑋 ↦ (1o × {𝑦})) ∈ (𝑅 Cn (𝑅ko 𝒫 1o)))
1614, 9, 15syl2anc 584 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑦𝑋 ↦ (1o × {𝑦})) ∈ (𝑅 Cn (𝑅ko 𝒫 1o)))
17 sneq 4571 . . . . . 6 (𝑦 = 𝑥 → {𝑦} = {𝑥})
1817xpeq2d 5619 . . . . 5 (𝑦 = 𝑥 → (1o × {𝑦}) = (1o × {𝑥}))
195, 9, 11, 9, 16, 18cnmpt21 22822 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (1o × {𝑥})) ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn (𝑅ko 𝒫 1o)))
20 distop 22145 . . . . . 6 (1o ∈ On → 𝒫 1o ∈ Top)
2112, 20mp1i 13 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝒫 1o ∈ Top)
22 eqid 2738 . . . . . 6 (𝑅ko 𝒫 1o) = (𝑅ko 𝒫 1o)
2322xkotopon 22751 . . . . 5 ((𝒫 1o ∈ Top ∧ 𝑅 ∈ Top) → (𝑅ko 𝒫 1o) ∈ (TopOn‘(𝒫 1o Cn 𝑅)))
2421, 6, 23syl2anc 584 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑅ko 𝒫 1o) ∈ (TopOn‘(𝒫 1o Cn 𝑅)))
25 simpl 483 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑅 ∈ 𝑛-Locally Comp)
26 simpr 485 . . . . 5 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top)
27 eqid 2738 . . . . . 6 (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔)) = (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔))
2827xkococn 22811 . . . . 5 ((𝒫 1o ∈ Top ∧ 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔)) ∈ (((𝑆ko 𝑅) ×t (𝑅ko 𝒫 1o)) Cn (𝑆ko 𝒫 1o)))
2921, 25, 26, 28syl3anc 1370 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑔 ∈ (𝑅 Cn 𝑆), ∈ (𝒫 1o Cn 𝑅) ↦ (𝑔)) ∈ (((𝑆ko 𝑅) ×t (𝑅ko 𝒫 1o)) Cn (𝑆ko 𝒫 1o)))
30 coeq1 5766 . . . . 5 (𝑔 = 𝑓 → (𝑔) = (𝑓))
31 coeq2 5767 . . . . 5 ( = (1o × {𝑥}) → (𝑓) = (𝑓 ∘ (1o × {𝑥})))
3230, 31sylan9eq 2798 . . . 4 ((𝑔 = 𝑓 = (1o × {𝑥})) → (𝑔) = (𝑓 ∘ (1o × {𝑥})))
335, 9, 10, 19, 5, 24, 29, 32cnmpt22 22825 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓 ∘ (1o × {𝑥}))) ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn (𝑆ko 𝒫 1o)))
34 eqid 2738 . . . . 5 (𝑆ko 𝒫 1o) = (𝑆ko 𝒫 1o)
3534xkotopon 22751 . . . 4 ((𝒫 1o ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝒫 1o) ∈ (TopOn‘(𝒫 1o Cn 𝑆)))
3621, 26, 35syl2anc 584 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑆ko 𝒫 1o) ∈ (TopOn‘(𝒫 1o Cn 𝑆)))
37 0lt1o 8334 . . . . 5 ∅ ∈ 1o
3837a1i 11 . . . 4 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → ∅ ∈ 1o)
39 unipw 5366 . . . . . 6 𝒫 1o = 1o
4039eqcomi 2747 . . . . 5 1o = 𝒫 1o
4140xkopjcn 22807 . . . 4 ((𝒫 1o ∈ Top ∧ 𝑆 ∈ Top ∧ ∅ ∈ 1o) → (𝑔 ∈ (𝒫 1o Cn 𝑆) ↦ (𝑔‘∅)) ∈ ((𝑆ko 𝒫 1o) Cn 𝑆))
4221, 26, 38, 41syl3anc 1370 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑔 ∈ (𝒫 1o Cn 𝑆) ↦ (𝑔‘∅)) ∈ ((𝑆ko 𝒫 1o) Cn 𝑆))
43 fveq1 6773 . . . 4 (𝑔 = (𝑓 ∘ (1o × {𝑥})) → (𝑔‘∅) = ((𝑓 ∘ (1o × {𝑥}))‘∅))
44 vex 3436 . . . . . . 7 𝑥 ∈ V
4544fconst 6660 . . . . . 6 (1o × {𝑥}):1o⟶{𝑥}
46 fvco3 6867 . . . . . 6 (((1o × {𝑥}):1o⟶{𝑥} ∧ ∅ ∈ 1o) → ((𝑓 ∘ (1o × {𝑥}))‘∅) = (𝑓‘((1o × {𝑥})‘∅)))
4745, 37, 46mp2an 689 . . . . 5 ((𝑓 ∘ (1o × {𝑥}))‘∅) = (𝑓‘((1o × {𝑥})‘∅))
4844fvconst2 7079 . . . . . . 7 (∅ ∈ 1o → ((1o × {𝑥})‘∅) = 𝑥)
4937, 48ax-mp 5 . . . . . 6 ((1o × {𝑥})‘∅) = 𝑥
5049fveq2i 6777 . . . . 5 (𝑓‘((1o × {𝑥})‘∅)) = (𝑓𝑥)
5147, 50eqtri 2766 . . . 4 ((𝑓 ∘ (1o × {𝑥}))‘∅) = (𝑓𝑥)
5243, 51eqtrdi 2794 . . 3 (𝑔 = (𝑓 ∘ (1o × {𝑥})) → (𝑔‘∅) = (𝑓𝑥))
535, 9, 33, 36, 42, 52cnmpt21 22822 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥𝑋 ↦ (𝑓𝑥)) ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn 𝑆))
541, 53eqeltrid 2843 1 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝐹 ∈ (((𝑆ko 𝑅) ×t 𝑅) Cn 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839  cmpt 5157   × cxp 5587  ccom 5593  Oncon0 6266  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  Topctop 22042  TopOnctopon 22059   Cn ccn 22375  Compccmp 22537  𝑛-Locally cnlly 22616   ×t ctx 22711  ko cxko 22712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-pt 17155  df-top 22043  df-topon 22060  df-bases 22096  df-ntr 22171  df-nei 22249  df-cn 22378  df-cnp 22379  df-cmp 22538  df-nlly 22618  df-tx 22713  df-xko 22714
This theorem is referenced by:  cnmptk1p  22836  cnmptk2  22837
  Copyright terms: Public domain W3C validator