MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkk Structured version   Visualization version   GIF version

Theorem cnmptkk 23577
Description: The composition of two curried functions is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptkk.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptkk.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptkk.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptkk.m (𝜑𝑀 ∈ (TopOn‘𝑊))
cnmptkk.n (𝜑𝐿 ∈ 𝑛-Locally Comp)
cnmptkk.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptkk.b (𝜑 → (𝑥𝑋 ↦ (𝑧𝑍𝐵)) ∈ (𝐽 Cn (𝑀ko 𝐿)))
cnmptkk.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmptkk (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐶)) ∈ (𝐽 Cn (𝑀ko 𝐾)))
Distinct variable groups:   𝑧,𝐴   𝑦,𝐵   𝑥,𝐾   𝑥,𝐿   𝑥,𝑦,𝑋   𝑥,𝐽   𝑥,𝑀   𝜑,𝑥,𝑦   𝑦,𝑌   𝑦,𝑧,𝑍   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑦,𝑧)   𝐾(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑧)   𝑌(𝑥,𝑧)   𝑍(𝑥)

Proof of Theorem cnmptkk
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptkk.k . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘𝑌))
21adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
3 cnmptkk.l . . . . . . 7 (𝜑𝐿 ∈ (TopOn‘𝑍))
43adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘𝑍))
5 cnmptkk.j . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 topontop 22807 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
71, 6syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
8 cnmptkk.n . . . . . . . . . 10 (𝜑𝐿 ∈ 𝑛-Locally Comp)
9 nllytop 23367 . . . . . . . . . 10 (𝐿 ∈ 𝑛-Locally Comp → 𝐿 ∈ Top)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
11 eqid 2730 . . . . . . . . . 10 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1211xkotopon 23494 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
137, 10, 12syl2anc 584 . . . . . . . 8 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
14 cnmptkk.a . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
15 cnf2 23143 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
165, 13, 14, 15syl3anc 1373 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
1716fvmptelcdm 7088 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
18 cnf2 23143 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌𝑍)
192, 4, 17, 18syl3anc 1373 . . . . 5 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌𝑍)
20 eqid 2730 . . . . . 6 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2120fmpt 7085 . . . . 5 (∀𝑦𝑌 𝐴𝑍 ↔ (𝑦𝑌𝐴):𝑌𝑍)
2219, 21sylibr 234 . . . 4 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴𝑍)
23 eqidd 2731 . . . 4 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) = (𝑦𝑌𝐴))
24 eqidd 2731 . . . 4 ((𝜑𝑥𝑋) → (𝑧𝑍𝐵) = (𝑧𝑍𝐵))
25 cnmptkk.c . . . 4 (𝑧 = 𝐴𝐵 = 𝐶)
2622, 23, 24, 25fmptcof 7105 . . 3 ((𝜑𝑥𝑋) → ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)) = (𝑦𝑌𝐶))
2726mpteq2dva 5203 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴))) = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
28 cnmptkk.b . . 3 (𝜑 → (𝑥𝑋 ↦ (𝑧𝑍𝐵)) ∈ (𝐽 Cn (𝑀ko 𝐿)))
29 cnmptkk.m . . . . 5 (𝜑𝑀 ∈ (TopOn‘𝑊))
30 topontop 22807 . . . . 5 (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top)
3129, 30syl 17 . . . 4 (𝜑𝑀 ∈ Top)
32 eqid 2730 . . . . 5 (𝑀ko 𝐿) = (𝑀ko 𝐿)
3332xkotopon 23494 . . . 4 ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
3410, 31, 33syl2anc 584 . . 3 (𝜑 → (𝑀ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
35 eqid 2730 . . . . 5 (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔)) = (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔))
3635xkococn 23554 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ 𝑛-Locally Comp ∧ 𝑀 ∈ Top) → (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔)) ∈ (((𝑀ko 𝐿) ×t (𝐿ko 𝐾)) Cn (𝑀ko 𝐾)))
377, 8, 31, 36syl3anc 1373 . . 3 (𝜑 → (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔)) ∈ (((𝑀ko 𝐿) ×t (𝐿ko 𝐾)) Cn (𝑀ko 𝐾)))
38 coeq1 5824 . . . 4 (𝑓 = (𝑧𝑍𝐵) → (𝑓𝑔) = ((𝑧𝑍𝐵) ∘ 𝑔))
39 coeq2 5825 . . . 4 (𝑔 = (𝑦𝑌𝐴) → ((𝑧𝑍𝐵) ∘ 𝑔) = ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)))
4038, 39sylan9eq 2785 . . 3 ((𝑓 = (𝑧𝑍𝐵) ∧ 𝑔 = (𝑦𝑌𝐴)) → (𝑓𝑔) = ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)))
415, 28, 14, 34, 13, 37, 40cnmpt12 23561 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴))) ∈ (𝐽 Cn (𝑀ko 𝐾)))
4227, 41eqeltrrd 2830 1 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐶)) ∈ (𝐽 Cn (𝑀ko 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cmpt 5191  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  Topctop 22787  TopOnctopon 22804   Cn ccn 23118  Compccmp 23280  𝑛-Locally cnlly 23359   ×t ctx 23454  ko cxko 23455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-map 8804  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-ntr 22914  df-nei 22992  df-cn 23121  df-cmp 23281  df-nlly 23361  df-tx 23456  df-xko 23457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator