MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkk Structured version   Visualization version   GIF version

Theorem cnmptkk 23621
Description: The composition of two curried functions is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptkk.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptkk.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptkk.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptkk.m (𝜑𝑀 ∈ (TopOn‘𝑊))
cnmptkk.n (𝜑𝐿 ∈ 𝑛-Locally Comp)
cnmptkk.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptkk.b (𝜑 → (𝑥𝑋 ↦ (𝑧𝑍𝐵)) ∈ (𝐽 Cn (𝑀ko 𝐿)))
cnmptkk.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmptkk (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐶)) ∈ (𝐽 Cn (𝑀ko 𝐾)))
Distinct variable groups:   𝑧,𝐴   𝑦,𝐵   𝑥,𝐾   𝑥,𝐿   𝑥,𝑦,𝑋   𝑥,𝐽   𝑥,𝑀   𝜑,𝑥,𝑦   𝑦,𝑌   𝑦,𝑧,𝑍   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑦,𝑧)   𝐾(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑧)   𝑌(𝑥,𝑧)   𝑍(𝑥)

Proof of Theorem cnmptkk
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptkk.k . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘𝑌))
21adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
3 cnmptkk.l . . . . . . 7 (𝜑𝐿 ∈ (TopOn‘𝑍))
43adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘𝑍))
5 cnmptkk.j . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 topontop 22851 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
71, 6syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
8 cnmptkk.n . . . . . . . . . 10 (𝜑𝐿 ∈ 𝑛-Locally Comp)
9 nllytop 23411 . . . . . . . . . 10 (𝐿 ∈ 𝑛-Locally Comp → 𝐿 ∈ Top)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
11 eqid 2735 . . . . . . . . . 10 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1211xkotopon 23538 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
137, 10, 12syl2anc 584 . . . . . . . 8 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
14 cnmptkk.a . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
15 cnf2 23187 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
165, 13, 14, 15syl3anc 1373 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
1716fvmptelcdm 7103 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
18 cnf2 23187 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌𝑍)
192, 4, 17, 18syl3anc 1373 . . . . 5 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌𝑍)
20 eqid 2735 . . . . . 6 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2120fmpt 7100 . . . . 5 (∀𝑦𝑌 𝐴𝑍 ↔ (𝑦𝑌𝐴):𝑌𝑍)
2219, 21sylibr 234 . . . 4 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴𝑍)
23 eqidd 2736 . . . 4 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) = (𝑦𝑌𝐴))
24 eqidd 2736 . . . 4 ((𝜑𝑥𝑋) → (𝑧𝑍𝐵) = (𝑧𝑍𝐵))
25 cnmptkk.c . . . 4 (𝑧 = 𝐴𝐵 = 𝐶)
2622, 23, 24, 25fmptcof 7120 . . 3 ((𝜑𝑥𝑋) → ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)) = (𝑦𝑌𝐶))
2726mpteq2dva 5214 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴))) = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
28 cnmptkk.b . . 3 (𝜑 → (𝑥𝑋 ↦ (𝑧𝑍𝐵)) ∈ (𝐽 Cn (𝑀ko 𝐿)))
29 cnmptkk.m . . . . 5 (𝜑𝑀 ∈ (TopOn‘𝑊))
30 topontop 22851 . . . . 5 (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top)
3129, 30syl 17 . . . 4 (𝜑𝑀 ∈ Top)
32 eqid 2735 . . . . 5 (𝑀ko 𝐿) = (𝑀ko 𝐿)
3332xkotopon 23538 . . . 4 ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
3410, 31, 33syl2anc 584 . . 3 (𝜑 → (𝑀ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
35 eqid 2735 . . . . 5 (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔)) = (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔))
3635xkococn 23598 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ 𝑛-Locally Comp ∧ 𝑀 ∈ Top) → (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔)) ∈ (((𝑀ko 𝐿) ×t (𝐿ko 𝐾)) Cn (𝑀ko 𝐾)))
377, 8, 31, 36syl3anc 1373 . . 3 (𝜑 → (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔)) ∈ (((𝑀ko 𝐿) ×t (𝐿ko 𝐾)) Cn (𝑀ko 𝐾)))
38 coeq1 5837 . . . 4 (𝑓 = (𝑧𝑍𝐵) → (𝑓𝑔) = ((𝑧𝑍𝐵) ∘ 𝑔))
39 coeq2 5838 . . . 4 (𝑔 = (𝑦𝑌𝐴) → ((𝑧𝑍𝐵) ∘ 𝑔) = ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)))
4038, 39sylan9eq 2790 . . 3 ((𝑓 = (𝑧𝑍𝐵) ∧ 𝑔 = (𝑦𝑌𝐴)) → (𝑓𝑔) = ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)))
415, 28, 14, 34, 13, 37, 40cnmpt12 23605 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴))) ∈ (𝐽 Cn (𝑀ko 𝐾)))
4227, 41eqeltrrd 2835 1 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐶)) ∈ (𝐽 Cn (𝑀ko 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  cmpt 5201  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  Topctop 22831  TopOnctopon 22848   Cn ccn 23162  Compccmp 23324  𝑛-Locally cnlly 23403   ×t ctx 23498  ko cxko 23499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-map 8842  df-en 8960  df-dom 8961  df-fin 8963  df-fi 9423  df-rest 17436  df-topgen 17457  df-top 22832  df-topon 22849  df-bases 22884  df-ntr 22958  df-nei 23036  df-cn 23165  df-cmp 23325  df-nlly 23405  df-tx 23500  df-xko 23501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator