MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkk Structured version   Visualization version   GIF version

Theorem cnmptkk 23511
Description: The composition of two curried functions is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptkk.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmptkk.k (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
cnmptkk.l (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜π‘))
cnmptkk.m (πœ‘ β†’ 𝑀 ∈ (TopOnβ€˜π‘Š))
cnmptkk.n (πœ‘ β†’ 𝐿 ∈ 𝑛-Locally Comp)
cnmptkk.a (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝑦 ∈ π‘Œ ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾)))
cnmptkk.b (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝑧 ∈ 𝑍 ↦ 𝐡)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐿)))
cnmptkk.c (𝑧 = 𝐴 β†’ 𝐡 = 𝐢)
Assertion
Ref Expression
cnmptkk (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝑦 ∈ π‘Œ ↦ 𝐢)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾)))
Distinct variable groups:   𝑧,𝐴   𝑦,𝐡   π‘₯,𝐾   π‘₯,𝐿   π‘₯,𝑦,𝑋   π‘₯,𝐽   π‘₯,𝑀   πœ‘,π‘₯,𝑦   𝑦,π‘Œ   𝑦,𝑧,𝑍   𝑧,𝐢
Allowed substitution hints:   πœ‘(𝑧)   𝐴(π‘₯,𝑦)   𝐡(π‘₯,𝑧)   𝐢(π‘₯,𝑦)   𝐽(𝑦,𝑧)   𝐾(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑀(𝑦,𝑧)   π‘Š(π‘₯,𝑦,𝑧)   𝑋(𝑧)   π‘Œ(π‘₯,𝑧)   𝑍(π‘₯)

Proof of Theorem cnmptkk
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptkk.k . . . . . . 7 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
21adantr 480 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
3 cnmptkk.l . . . . . . 7 (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜π‘))
43adantr 480 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ 𝐿 ∈ (TopOnβ€˜π‘))
5 cnmptkk.j . . . . . . . 8 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
6 topontop 22739 . . . . . . . . . 10 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ 𝐾 ∈ Top)
71, 6syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐾 ∈ Top)
8 cnmptkk.n . . . . . . . . . 10 (πœ‘ β†’ 𝐿 ∈ 𝑛-Locally Comp)
9 nllytop 23301 . . . . . . . . . 10 (𝐿 ∈ 𝑛-Locally Comp β†’ 𝐿 ∈ Top)
108, 9syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐿 ∈ Top)
11 eqid 2724 . . . . . . . . . 10 (𝐿 ↑ko 𝐾) = (𝐿 ↑ko 𝐾)
1211xkotopon 23428 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) β†’ (𝐿 ↑ko 𝐾) ∈ (TopOnβ€˜(𝐾 Cn 𝐿)))
137, 10, 12syl2anc 583 . . . . . . . 8 (πœ‘ β†’ (𝐿 ↑ko 𝐾) ∈ (TopOnβ€˜(𝐾 Cn 𝐿)))
14 cnmptkk.a . . . . . . . 8 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝑦 ∈ π‘Œ ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾)))
15 cnf2 23077 . . . . . . . 8 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (𝐿 ↑ko 𝐾) ∈ (TopOnβ€˜(𝐾 Cn 𝐿)) ∧ (π‘₯ ∈ 𝑋 ↦ (𝑦 ∈ π‘Œ ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) β†’ (π‘₯ ∈ 𝑋 ↦ (𝑦 ∈ π‘Œ ↦ 𝐴)):π‘‹βŸΆ(𝐾 Cn 𝐿))
165, 13, 14, 15syl3anc 1368 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝑦 ∈ π‘Œ ↦ 𝐴)):π‘‹βŸΆ(𝐾 Cn 𝐿))
1716fvmptelcdm 7105 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ (𝑦 ∈ π‘Œ ↦ 𝐴) ∈ (𝐾 Cn 𝐿))
18 cnf2 23077 . . . . . 6 ((𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 ∈ (TopOnβ€˜π‘) ∧ (𝑦 ∈ π‘Œ ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) β†’ (𝑦 ∈ π‘Œ ↦ 𝐴):π‘ŒβŸΆπ‘)
192, 4, 17, 18syl3anc 1368 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ (𝑦 ∈ π‘Œ ↦ 𝐴):π‘ŒβŸΆπ‘)
20 eqid 2724 . . . . . 6 (𝑦 ∈ π‘Œ ↦ 𝐴) = (𝑦 ∈ π‘Œ ↦ 𝐴)
2120fmpt 7102 . . . . 5 (βˆ€π‘¦ ∈ π‘Œ 𝐴 ∈ 𝑍 ↔ (𝑦 ∈ π‘Œ ↦ 𝐴):π‘ŒβŸΆπ‘)
2219, 21sylibr 233 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ βˆ€π‘¦ ∈ π‘Œ 𝐴 ∈ 𝑍)
23 eqidd 2725 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ (𝑦 ∈ π‘Œ ↦ 𝐴) = (𝑦 ∈ π‘Œ ↦ 𝐴))
24 eqidd 2725 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ (𝑧 ∈ 𝑍 ↦ 𝐡) = (𝑧 ∈ 𝑍 ↦ 𝐡))
25 cnmptkk.c . . . 4 (𝑧 = 𝐴 β†’ 𝐡 = 𝐢)
2622, 23, 24, 25fmptcof 7121 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((𝑧 ∈ 𝑍 ↦ 𝐡) ∘ (𝑦 ∈ π‘Œ ↦ 𝐴)) = (𝑦 ∈ π‘Œ ↦ 𝐢))
2726mpteq2dva 5239 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐡) ∘ (𝑦 ∈ π‘Œ ↦ 𝐴))) = (π‘₯ ∈ 𝑋 ↦ (𝑦 ∈ π‘Œ ↦ 𝐢)))
28 cnmptkk.b . . 3 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝑧 ∈ 𝑍 ↦ 𝐡)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐿)))
29 cnmptkk.m . . . . 5 (πœ‘ β†’ 𝑀 ∈ (TopOnβ€˜π‘Š))
30 topontop 22739 . . . . 5 (𝑀 ∈ (TopOnβ€˜π‘Š) β†’ 𝑀 ∈ Top)
3129, 30syl 17 . . . 4 (πœ‘ β†’ 𝑀 ∈ Top)
32 eqid 2724 . . . . 5 (𝑀 ↑ko 𝐿) = (𝑀 ↑ko 𝐿)
3332xkotopon 23428 . . . 4 ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) β†’ (𝑀 ↑ko 𝐿) ∈ (TopOnβ€˜(𝐿 Cn 𝑀)))
3410, 31, 33syl2anc 583 . . 3 (πœ‘ β†’ (𝑀 ↑ko 𝐿) ∈ (TopOnβ€˜(𝐿 Cn 𝑀)))
35 eqid 2724 . . . . 5 (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓 ∘ 𝑔))
3635xkococn 23488 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ 𝑛-Locally Comp ∧ 𝑀 ∈ Top) β†’ (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓 ∘ 𝑔)) ∈ (((𝑀 ↑ko 𝐿) Γ—t (𝐿 ↑ko 𝐾)) Cn (𝑀 ↑ko 𝐾)))
377, 8, 31, 36syl3anc 1368 . . 3 (πœ‘ β†’ (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓 ∘ 𝑔)) ∈ (((𝑀 ↑ko 𝐿) Γ—t (𝐿 ↑ko 𝐾)) Cn (𝑀 ↑ko 𝐾)))
38 coeq1 5848 . . . 4 (𝑓 = (𝑧 ∈ 𝑍 ↦ 𝐡) β†’ (𝑓 ∘ 𝑔) = ((𝑧 ∈ 𝑍 ↦ 𝐡) ∘ 𝑔))
39 coeq2 5849 . . . 4 (𝑔 = (𝑦 ∈ π‘Œ ↦ 𝐴) β†’ ((𝑧 ∈ 𝑍 ↦ 𝐡) ∘ 𝑔) = ((𝑧 ∈ 𝑍 ↦ 𝐡) ∘ (𝑦 ∈ π‘Œ ↦ 𝐴)))
4038, 39sylan9eq 2784 . . 3 ((𝑓 = (𝑧 ∈ 𝑍 ↦ 𝐡) ∧ 𝑔 = (𝑦 ∈ π‘Œ ↦ 𝐴)) β†’ (𝑓 ∘ 𝑔) = ((𝑧 ∈ 𝑍 ↦ 𝐡) ∘ (𝑦 ∈ π‘Œ ↦ 𝐴)))
415, 28, 14, 34, 13, 37, 40cnmpt12 23495 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐡) ∘ (𝑦 ∈ π‘Œ ↦ 𝐴))) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾)))
4227, 41eqeltrrd 2826 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝑦 ∈ π‘Œ ↦ 𝐢)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053   ↦ cmpt 5222   ∘ ccom 5671  βŸΆwf 6530  β€˜cfv 6534  (class class class)co 7402   ∈ cmpo 7404  Topctop 22719  TopOnctopon 22736   Cn ccn 23052  Compccmp 23214  π‘›-Locally cnlly 23293   Γ—t ctx 23388   ↑ko cxko 23389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-fin 8940  df-fi 9403  df-rest 17369  df-topgen 17390  df-top 22720  df-topon 22737  df-bases 22773  df-ntr 22848  df-nei 22926  df-cn 23055  df-cmp 23215  df-nlly 23295  df-tx 23390  df-xko 23391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator