MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkk Structured version   Visualization version   GIF version

Theorem cnmptkk 22742
Description: The composition of two curried functions is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptkk.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptkk.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptkk.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptkk.m (𝜑𝑀 ∈ (TopOn‘𝑊))
cnmptkk.n (𝜑𝐿 ∈ 𝑛-Locally Comp)
cnmptkk.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptkk.b (𝜑 → (𝑥𝑋 ↦ (𝑧𝑍𝐵)) ∈ (𝐽 Cn (𝑀ko 𝐿)))
cnmptkk.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmptkk (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐶)) ∈ (𝐽 Cn (𝑀ko 𝐾)))
Distinct variable groups:   𝑧,𝐴   𝑦,𝐵   𝑥,𝐾   𝑥,𝐿   𝑥,𝑦,𝑋   𝑥,𝐽   𝑥,𝑀   𝜑,𝑥,𝑦   𝑦,𝑌   𝑦,𝑧,𝑍   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑦,𝑧)   𝐾(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑧)   𝑌(𝑥,𝑧)   𝑍(𝑥)

Proof of Theorem cnmptkk
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptkk.k . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘𝑌))
21adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
3 cnmptkk.l . . . . . . 7 (𝜑𝐿 ∈ (TopOn‘𝑍))
43adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘𝑍))
5 cnmptkk.j . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 topontop 21970 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
71, 6syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
8 cnmptkk.n . . . . . . . . . 10 (𝜑𝐿 ∈ 𝑛-Locally Comp)
9 nllytop 22532 . . . . . . . . . 10 (𝐿 ∈ 𝑛-Locally Comp → 𝐿 ∈ Top)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
11 eqid 2738 . . . . . . . . . 10 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1211xkotopon 22659 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
137, 10, 12syl2anc 583 . . . . . . . 8 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
14 cnmptkk.a . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
15 cnf2 22308 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
165, 13, 14, 15syl3anc 1369 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
1716fvmptelrn 6969 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
18 cnf2 22308 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌𝑍)
192, 4, 17, 18syl3anc 1369 . . . . 5 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌𝑍)
20 eqid 2738 . . . . . 6 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2120fmpt 6966 . . . . 5 (∀𝑦𝑌 𝐴𝑍 ↔ (𝑦𝑌𝐴):𝑌𝑍)
2219, 21sylibr 233 . . . 4 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴𝑍)
23 eqidd 2739 . . . 4 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) = (𝑦𝑌𝐴))
24 eqidd 2739 . . . 4 ((𝜑𝑥𝑋) → (𝑧𝑍𝐵) = (𝑧𝑍𝐵))
25 cnmptkk.c . . . 4 (𝑧 = 𝐴𝐵 = 𝐶)
2622, 23, 24, 25fmptcof 6984 . . 3 ((𝜑𝑥𝑋) → ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)) = (𝑦𝑌𝐶))
2726mpteq2dva 5170 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴))) = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
28 cnmptkk.b . . 3 (𝜑 → (𝑥𝑋 ↦ (𝑧𝑍𝐵)) ∈ (𝐽 Cn (𝑀ko 𝐿)))
29 cnmptkk.m . . . . 5 (𝜑𝑀 ∈ (TopOn‘𝑊))
30 topontop 21970 . . . . 5 (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top)
3129, 30syl 17 . . . 4 (𝜑𝑀 ∈ Top)
32 eqid 2738 . . . . 5 (𝑀ko 𝐿) = (𝑀ko 𝐿)
3332xkotopon 22659 . . . 4 ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
3410, 31, 33syl2anc 583 . . 3 (𝜑 → (𝑀ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
35 eqid 2738 . . . . 5 (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔)) = (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔))
3635xkococn 22719 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ 𝑛-Locally Comp ∧ 𝑀 ∈ Top) → (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔)) ∈ (((𝑀ko 𝐿) ×t (𝐿ko 𝐾)) Cn (𝑀ko 𝐾)))
377, 8, 31, 36syl3anc 1369 . . 3 (𝜑 → (𝑓 ∈ (𝐿 Cn 𝑀), 𝑔 ∈ (𝐾 Cn 𝐿) ↦ (𝑓𝑔)) ∈ (((𝑀ko 𝐿) ×t (𝐿ko 𝐾)) Cn (𝑀ko 𝐾)))
38 coeq1 5755 . . . 4 (𝑓 = (𝑧𝑍𝐵) → (𝑓𝑔) = ((𝑧𝑍𝐵) ∘ 𝑔))
39 coeq2 5756 . . . 4 (𝑔 = (𝑦𝑌𝐴) → ((𝑧𝑍𝐵) ∘ 𝑔) = ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)))
4038, 39sylan9eq 2799 . . 3 ((𝑓 = (𝑧𝑍𝐵) ∧ 𝑔 = (𝑦𝑌𝐴)) → (𝑓𝑔) = ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)))
415, 28, 14, 34, 13, 37, 40cnmpt12 22726 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴))) ∈ (𝐽 Cn (𝑀ko 𝐾)))
4227, 41eqeltrrd 2840 1 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐶)) ∈ (𝐽 Cn (𝑀ko 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cmpt 5153  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  Topctop 21950  TopOnctopon 21967   Cn ccn 22283  Compccmp 22445  𝑛-Locally cnlly 22524   ×t ctx 22619  ko cxko 22620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-ntr 22079  df-nei 22157  df-cn 22286  df-cmp 22446  df-nlly 22526  df-tx 22621  df-xko 22622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator