![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwlk2lem2fv | Structured version Visualization version GIF version |
Description: Value of the function π . (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-Nov-2022.) |
Ref | Expression |
---|---|
numclwwlk.v | β’ π = (VtxβπΊ) |
numclwwlk.q | β’ π = (π£ β π, π β β β¦ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)}) |
numclwwlk.h | β’ π» = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π£}) |
numclwwlk.r | β’ π = (π₯ β (ππ»(π + 2)) β¦ (π₯ prefix (π + 1))) |
Ref | Expression |
---|---|
numclwlk2lem2fv | β’ ((π β π β§ π β β) β (π β (ππ»(π + 2)) β (π βπ) = (π prefix (π + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk.r | . . 3 β’ π = (π₯ β (ππ»(π + 2)) β¦ (π₯ prefix (π + 1))) | |
2 | oveq1 7424 | . . 3 β’ (π₯ = π β (π₯ prefix (π + 1)) = (π prefix (π + 1))) | |
3 | simpr 483 | . . 3 β’ (((π β π β§ π β β) β§ π β (ππ»(π + 2))) β π β (ππ»(π + 2))) | |
4 | ovexd 7452 | . . 3 β’ (((π β π β§ π β β) β§ π β (ππ»(π + 2))) β (π prefix (π + 1)) β V) | |
5 | 1, 2, 3, 4 | fvmptd3 7025 | . 2 β’ (((π β π β§ π β β) β§ π β (ππ»(π + 2))) β (π βπ) = (π prefix (π + 1))) |
6 | 5 | ex 411 | 1 β’ ((π β π β§ π β β) β (π β (ππ»(π + 2)) β (π βπ) = (π prefix (π + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 {crab 3419 Vcvv 3463 β¦ cmpt 5231 βcfv 6547 (class class class)co 7417 β cmpo 7419 0cc0 11138 1c1 11139 + caddc 11141 β cmin 11474 βcn 12242 2c2 12297 β€β₯cuz 12852 lastSclsw 14544 prefix cpfx 14652 Vtxcvtx 28865 WWalksN cwwlksn 29693 ClWWalksNOncclwwlknon 29953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-ov 7420 |
This theorem is referenced by: numclwlk2lem2f1o 30245 |
Copyright terms: Public domain | W3C validator |