| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwlk2lem2fv | Structured version Visualization version GIF version | ||
| Description: Value of the function 𝑅. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-Nov-2022.) |
| Ref | Expression |
|---|---|
| numclwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| numclwwlk.q | ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
| numclwwlk.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
| numclwwlk.r | ⊢ 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1))) |
| Ref | Expression |
|---|---|
| numclwlk2lem2fv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑊) = (𝑊 prefix (𝑁 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numclwwlk.r | . . 3 ⊢ 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1))) | |
| 2 | oveq1 7397 | . . 3 ⊢ (𝑥 = 𝑊 → (𝑥 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1))) | |
| 3 | simpr 484 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) | |
| 4 | ovexd 7425 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑊 prefix (𝑁 + 1)) ∈ V) | |
| 5 | 1, 2, 3, 4 | fvmptd3 6994 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅‘𝑊) = (𝑊 prefix (𝑁 + 1))) |
| 6 | 5 | ex 412 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑊) = (𝑊 prefix (𝑁 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 0cc0 11075 1c1 11076 + caddc 11078 − cmin 11412 ℕcn 12193 2c2 12248 ℤ≥cuz 12800 lastSclsw 14534 prefix cpfx 14642 Vtxcvtx 28930 WWalksN cwwlksn 29763 ClWWalksNOncclwwlknon 30023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: numclwlk2lem2f1o 30315 |
| Copyright terms: Public domain | W3C validator |