| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwlk2lem2fv | Structured version Visualization version GIF version | ||
| Description: Value of the function 𝑅. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-Nov-2022.) |
| Ref | Expression |
|---|---|
| numclwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| numclwwlk.q | ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
| numclwwlk.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
| numclwwlk.r | ⊢ 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1))) |
| Ref | Expression |
|---|---|
| numclwlk2lem2fv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑊) = (𝑊 prefix (𝑁 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numclwwlk.r | . . 3 ⊢ 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1))) | |
| 2 | oveq1 7353 | . . 3 ⊢ (𝑥 = 𝑊 → (𝑥 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1))) | |
| 3 | simpr 484 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) | |
| 4 | ovexd 7381 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑊 prefix (𝑁 + 1)) ∈ V) | |
| 5 | 1, 2, 3, 4 | fvmptd3 6952 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅‘𝑊) = (𝑊 prefix (𝑁 + 1))) |
| 6 | 5 | ex 412 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑊) = (𝑊 prefix (𝑁 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 0cc0 11003 1c1 11004 + caddc 11006 − cmin 11341 ℕcn 12122 2c2 12177 ℤ≥cuz 12729 lastSclsw 14466 prefix cpfx 14575 Vtxcvtx 28972 WWalksN cwwlksn 29802 ClWWalksNOncclwwlknon 30062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: numclwlk2lem2f1o 30354 |
| Copyright terms: Public domain | W3C validator |