MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk2lem2fv Structured version   Visualization version   GIF version

Theorem numclwlk2lem2fv 29631
Description: Value of the function 𝑅. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtxβ€˜πΊ)
numclwwlk.q 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
numclwwlk.h 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
numclwwlk.r 𝑅 = (π‘₯ ∈ (𝑋𝐻(𝑁 + 2)) ↦ (π‘₯ prefix (𝑁 + 1)))
Assertion
Ref Expression
numclwlk2lem2fv ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (π‘Š ∈ (𝑋𝐻(𝑁 + 2)) β†’ (π‘…β€˜π‘Š) = (π‘Š prefix (𝑁 + 1))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑀   𝑀,𝑉   𝑣,π‘Š,𝑀   π‘₯,𝐺,𝑀   π‘₯,𝐻   π‘₯,𝑁   π‘₯,𝑄   π‘₯,𝑉   π‘₯,𝑋   π‘₯,π‘Š
Allowed substitution hints:   𝑄(𝑀,𝑣,𝑛)   𝑅(π‘₯,𝑀,𝑣,𝑛)   𝐻(𝑀,𝑣,𝑛)   π‘Š(𝑛)

Proof of Theorem numclwlk2lem2fv
StepHypRef Expression
1 numclwwlk.r . . 3 𝑅 = (π‘₯ ∈ (𝑋𝐻(𝑁 + 2)) ↦ (π‘₯ prefix (𝑁 + 1)))
2 oveq1 7416 . . 3 (π‘₯ = π‘Š β†’ (π‘₯ prefix (𝑁 + 1)) = (π‘Š prefix (𝑁 + 1)))
3 simpr 486 . . 3 (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ π‘Š ∈ (𝑋𝐻(𝑁 + 2))) β†’ π‘Š ∈ (𝑋𝐻(𝑁 + 2)))
4 ovexd 7444 . . 3 (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ π‘Š ∈ (𝑋𝐻(𝑁 + 2))) β†’ (π‘Š prefix (𝑁 + 1)) ∈ V)
51, 2, 3, 4fvmptd3 7022 . 2 (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ π‘Š ∈ (𝑋𝐻(𝑁 + 2))) β†’ (π‘…β€˜π‘Š) = (π‘Š prefix (𝑁 + 1)))
65ex 414 1 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (π‘Š ∈ (𝑋𝐻(𝑁 + 2)) β†’ (π‘…β€˜π‘Š) = (π‘Š prefix (𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  {crab 3433  Vcvv 3475   ↦ cmpt 5232  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  0cc0 11110  1c1 11111   + caddc 11113   βˆ’ cmin 11444  β„•cn 12212  2c2 12267  β„€β‰₯cuz 12822  lastSclsw 14512   prefix cpfx 14620  Vtxcvtx 28256   WWalksN cwwlksn 29080  ClWWalksNOncclwwlknon 29340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412
This theorem is referenced by:  numclwlk2lem2f1o  29632
  Copyright terms: Public domain W3C validator