![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwlk2lem2fv | Structured version Visualization version GIF version |
Description: Value of the function 𝑅. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-Nov-2022.) |
Ref | Expression |
---|---|
numclwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
numclwwlk.q | ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
numclwwlk.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
numclwwlk.r | ⊢ 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1))) |
Ref | Expression |
---|---|
numclwlk2lem2fv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑊) = (𝑊 prefix (𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk.r | . . 3 ⊢ 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1))) | |
2 | oveq1 7457 | . . 3 ⊢ (𝑥 = 𝑊 → (𝑥 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1))) | |
3 | simpr 484 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) | |
4 | ovexd 7485 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑊 prefix (𝑁 + 1)) ∈ V) | |
5 | 1, 2, 3, 4 | fvmptd3 7054 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅‘𝑊) = (𝑊 prefix (𝑁 + 1))) |
6 | 5 | ex 412 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑊) = (𝑊 prefix (𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 0cc0 11186 1c1 11187 + caddc 11189 − cmin 11522 ℕcn 12295 2c2 12350 ℤ≥cuz 12905 lastSclsw 14612 prefix cpfx 14720 Vtxcvtx 29033 WWalksN cwwlksn 29861 ClWWalksNOncclwwlknon 30121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 |
This theorem is referenced by: numclwlk2lem2f1o 30413 |
Copyright terms: Public domain | W3C validator |