MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk2lem2fv Structured version   Visualization version   GIF version

Theorem numclwlk2lem2fv 30244
Description: Value of the function 𝑅. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtxβ€˜πΊ)
numclwwlk.q 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
numclwwlk.h 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
numclwwlk.r 𝑅 = (π‘₯ ∈ (𝑋𝐻(𝑁 + 2)) ↦ (π‘₯ prefix (𝑁 + 1)))
Assertion
Ref Expression
numclwlk2lem2fv ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (π‘Š ∈ (𝑋𝐻(𝑁 + 2)) β†’ (π‘…β€˜π‘Š) = (π‘Š prefix (𝑁 + 1))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑀   𝑀,𝑉   𝑣,π‘Š,𝑀   π‘₯,𝐺,𝑀   π‘₯,𝐻   π‘₯,𝑁   π‘₯,𝑄   π‘₯,𝑉   π‘₯,𝑋   π‘₯,π‘Š
Allowed substitution hints:   𝑄(𝑀,𝑣,𝑛)   𝑅(π‘₯,𝑀,𝑣,𝑛)   𝐻(𝑀,𝑣,𝑛)   π‘Š(𝑛)

Proof of Theorem numclwlk2lem2fv
StepHypRef Expression
1 numclwwlk.r . . 3 𝑅 = (π‘₯ ∈ (𝑋𝐻(𝑁 + 2)) ↦ (π‘₯ prefix (𝑁 + 1)))
2 oveq1 7424 . . 3 (π‘₯ = π‘Š β†’ (π‘₯ prefix (𝑁 + 1)) = (π‘Š prefix (𝑁 + 1)))
3 simpr 483 . . 3 (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ π‘Š ∈ (𝑋𝐻(𝑁 + 2))) β†’ π‘Š ∈ (𝑋𝐻(𝑁 + 2)))
4 ovexd 7452 . . 3 (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ π‘Š ∈ (𝑋𝐻(𝑁 + 2))) β†’ (π‘Š prefix (𝑁 + 1)) ∈ V)
51, 2, 3, 4fvmptd3 7025 . 2 (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ π‘Š ∈ (𝑋𝐻(𝑁 + 2))) β†’ (π‘…β€˜π‘Š) = (π‘Š prefix (𝑁 + 1)))
65ex 411 1 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (π‘Š ∈ (𝑋𝐻(𝑁 + 2)) β†’ (π‘…β€˜π‘Š) = (π‘Š prefix (𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  {crab 3419  Vcvv 3463   ↦ cmpt 5231  β€˜cfv 6547  (class class class)co 7417   ∈ cmpo 7419  0cc0 11138  1c1 11139   + caddc 11141   βˆ’ cmin 11474  β„•cn 12242  2c2 12297  β„€β‰₯cuz 12852  lastSclsw 14544   prefix cpfx 14652  Vtxcvtx 28865   WWalksN cwwlksn 29693  ClWWalksNOncclwwlknon 29953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6499  df-fun 6549  df-fv 6555  df-ov 7420
This theorem is referenced by:  numclwlk2lem2f1o  30245
  Copyright terms: Public domain W3C validator