![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwlk2lem2fv | Structured version Visualization version GIF version |
Description: Value of the function π . (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-Nov-2022.) |
Ref | Expression |
---|---|
numclwwlk.v | β’ π = (VtxβπΊ) |
numclwwlk.q | β’ π = (π£ β π, π β β β¦ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)}) |
numclwwlk.h | β’ π» = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π£}) |
numclwwlk.r | β’ π = (π₯ β (ππ»(π + 2)) β¦ (π₯ prefix (π + 1))) |
Ref | Expression |
---|---|
numclwlk2lem2fv | β’ ((π β π β§ π β β) β (π β (ππ»(π + 2)) β (π βπ) = (π prefix (π + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk.r | . . 3 β’ π = (π₯ β (ππ»(π + 2)) β¦ (π₯ prefix (π + 1))) | |
2 | oveq1 7416 | . . 3 β’ (π₯ = π β (π₯ prefix (π + 1)) = (π prefix (π + 1))) | |
3 | simpr 486 | . . 3 β’ (((π β π β§ π β β) β§ π β (ππ»(π + 2))) β π β (ππ»(π + 2))) | |
4 | ovexd 7444 | . . 3 β’ (((π β π β§ π β β) β§ π β (ππ»(π + 2))) β (π prefix (π + 1)) β V) | |
5 | 1, 2, 3, 4 | fvmptd3 7022 | . 2 β’ (((π β π β§ π β β) β§ π β (ππ»(π + 2))) β (π βπ) = (π prefix (π + 1))) |
6 | 5 | ex 414 | 1 β’ ((π β π β§ π β β) β (π β (ππ»(π + 2)) β (π βπ) = (π prefix (π + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 {crab 3433 Vcvv 3475 β¦ cmpt 5232 βcfv 6544 (class class class)co 7409 β cmpo 7411 0cc0 11110 1c1 11111 + caddc 11113 β cmin 11444 βcn 12212 2c2 12267 β€β₯cuz 12822 lastSclsw 14512 prefix cpfx 14620 Vtxcvtx 28256 WWalksN cwwlksn 29080 ClWWalksNOncclwwlknon 29340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 |
This theorem is referenced by: numclwlk2lem2f1o 29632 |
Copyright terms: Public domain | W3C validator |